Skip to main content
Log in

Metabolomics and hormonomics to crack the code of filbert growth

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Plants respond to changes in their environments through hormonal activation of a physiological cascade that redirects metabolic resources and growth. In filberts (Corylus sp.), chelated iron promotes the growth of new shoots but the mechanism(s) are not understood.

Objectives

To use untargeted metabolomics and hormonomics approaches to generate novel hypotheses for the morphoregulatory role of ferric ethylenediamine-N,N'-di-(ortho-hydroxyphenyl) acetic acid (Fe-EDDHA) in filbert shoot organogenesis in vitro.

Methods

Data were generated using previously optimized standardized untargeted metabolomics protocols with time of flight mass spectrometry. Multivariate statistical tools (principal component and partial least squares discriminant analysis) did not detect significant differences. Discovery tools Significance Analysis of Microarrays (SAM), multiple linear regression analysis, Bayesian analysis, logical algorithms, machine learning, synthetic biotransformations, targeted hormonomics, and online resources including MetaboAnalyst were used.

Results

Starch/sucrose metabolism and shikimate pathway metabolites were increased. Dose dependent decreases were found in polyphenol metabolism, specifically ellagic acid and its methylated derivative 3,4,3′-tri-O-methylellagic acid. Hormonomics analysis revealed significant differences in phytohormones and their conjugates. FeEDDHA treatment reduced indole-3-acetic acid, abscisic acid, salicylic acid, jasmonic acid conjugates (JA-Trp, JA-Ile, OH-JA) and dihydrozeatinglucoside in regenerating explants. Serotonin (5HT) was decreased in FeEDDHA-treated regenerating tissues while the related metabolite melatonin was increased. Eight phenolic conjugates of 5HT and eight catabolites were affected by FeEDDHA indicating that metabolism to sequester, deactivate and metabolize 5HT was induced by Fe(III). Tryptophan was metabolized through kynurenine but not anthranilate.

Conclusion

Seven novel hypotheses were generated to guide future studies to understand the regulatory control(s) of shoot organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The metabolomics and metadata reported in this paper have been made available via the NIH Metabolomics Workbench Study ID ST001296.

References

  • Afendi, F. M., Okada, T., Yamazaki, M., Hirai-Morita, A., Nakamura, Y., Nakamura, K., et al. (2012). KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant & Cell Physiology,53, e1.

    Article  CAS  Google Scholar 

  • Akin, M., Eyduran, E., Niedz, R. P., & Reed, B. M. (2017). Developing hazelnut tissue culture medium free of ion confounding. Plant Cell, Tissue and Organ Culture,130, 483–494.

    Article  CAS  Google Scholar 

  • Arnao, M. B., & Hernández-Ruiz, J. (2018a). Melatonin and its relationship to plant hormones. Annals of Botany,121, 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Arnao, M. B., & Hernández-Ruiz, J. (2018b). Melatonin: A new plant hormone and/or a plant master regulator? Trends in Plant Science,24, 38–48.

    Article  PubMed  CAS  Google Scholar 

  • Arnao, M. B., & Hernández-Ruiz, J. (2019). Role of melatonin to enhance phytoremediation capacity. Applied Sciences,9, 5293–5218.

    Article  CAS  Google Scholar 

  • Bajwa, V. S., Shukla, M. R., Sherif, S. M., Murch, S. J., & Saxena, P. K. (2015). Identification and characterization of serotonin as an anti-browning compound of apple and pear. Postharvest Biology and Technology,110, 183–189.

    Article  CAS  Google Scholar 

  • Bienfait, H. F., Garcia-Mina, J., & Zamareño, A. M. (2004). Distribution and secondary effects of EDDHA in some vegetable species. Soil Science and Plant Nutrition,50, 1103–1110.

    Article  CAS  Google Scholar 

  • Bowden, K., Brown, B. G., & Batty, J. E. (1954). 5-Hydroxytryptamine: its occurrence in cowhage. Nature,174, 925–926.

    Article  CAS  PubMed  Google Scholar 

  • Brown, P. N., Murch, S. J., & Shipley, P. (2012a). Phytochemical diversity of cranberry (Vaccinium macrocarpon Aiton) cultivars by anthocyanin determination and metabolomic profiling with chemometric analysis. Journal of Agricultural and Food Chemistry,60, 261–271.

    Article  CAS  PubMed  Google Scholar 

  • Brown, P., Turi, C., Shipley, P., & Murch, S. J. (2012b). Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis. Planta Medica,78, 630–640.

    Article  CAS  PubMed  Google Scholar 

  • Chandok, M. R., & Sopory, S. K. (1994). 5-Hydroxytryptamine affects turnover of polyphosphoinositides in maize and stimulates nitrate reductase in the absence of light. FEBS Letters,356, 39–42.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay, A., Erland, L. A. E., Jones, A. M. P., & Saxena, P. K. (2018). Indoleamines and phenylpropanoids modify development in the bryophyte Plagiomnium cuspidatum. Vitro Cellular & Developmental Biology - Plant,54, 454–464.

    Article  CAS  Google Scholar 

  • Chen, L.-S., Smith, B. R., & Cheng, L. (2004). CO2 assimilation, photosynthetic enzymes, and carbohydrates of `Concord' grape leaves in response to iron supply. Journal of the American Society for Horticultural Science,129, 738–744.

    Article  CAS  Google Scholar 

  • Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Research,46, W486–W494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong, J., & Xia, J. (2018). MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics,34, 4313–4314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong, J., Yamamoto, M., & Xia, J. (2019). MetaboAnalystR 2.0: From raw spectra to biological insights. Metabolites,9, 57.

    Article  CAS  PubMed Central  Google Scholar 

  • Das, R., & Sopory, S. K. (1985). Evidence of regulation of calcium uptake by phytochrome in maize protoplasts. Biochemical and Biophysical Research Communications,128, 1455–1460.

    Article  CAS  PubMed  Google Scholar 

  • Debnath, B., Islam, W., Li, M., Sun, Y., Lu, X., Mitra, S., et al. (2019). Melatonin mediates enhancement of stress tolerance in plants. International Journal of Molecular Sciences,20, 1040–1117.

    Article  CAS  PubMed Central  Google Scholar 

  • Driver, J. A., & Kuniyuki, A. H. (1984). In vitro propagation of Paradox walnut rootstock [Juglans hindsii X Juglans regia, tissue culture]. HortScience,18, 506–509.

    Google Scholar 

  • Dubbels, R., Reiter, R. J., Klenke, E., Goebel, A., Schnakenberg, E., Ehlers, C., et al. (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research,18, 28–31.

    Article  CAS  PubMed  Google Scholar 

  • Enders, T. A., & Strader, L. C. (2015). Auxin activity: Past, present, and future. American Journal of Botany,102, 180–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erland, L. A. E., Murch, S. J., Reiter, R. J., & Saxena, P. K. (2015). A new balancing act: The many roles of melatonin and serotonin in plant growth and development. Plant Signaling & Behavior,10, e1096469–e1096515.

    Article  CAS  Google Scholar 

  • Erland, L. A. E., Saxena, P. K., & Murch, S. J. (2017). Melatonin in plant signalling and behaviour. Functional Plant Biology,45, 58–69.

    Article  CAS  Google Scholar 

  • Erland, L. A. E., Turi, C. E., & Saxena, P. K. (2016). Serotonin: An ancient molecule and an important regulator of plant processes. Biotechnology Advances,8, 1347–1361.

    Article  CAS  Google Scholar 

  • Erland, L. A. E., Shukla, M. R., Singh, A. S., Murch, S. J., & Saxena, P. K. (2019a). Melatonin and serotonin: mediators in the symphony of plant morphogenesis. Journal of Pineal Research,64, e12452.

    Article  CAS  Google Scholar 

  • Erland, L. A. E., Turi, C. E., & Saxena, P. K. (2019b). Serotonin in Plants: Origin, Functions, and Implications. Serotonin (pp. 23–46). Cambridge: Academic Press.

    Chapter  Google Scholar 

  • Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology,18, 1157–1161.

    Article  CAS  PubMed  Google Scholar 

  • Galano, A., Tan, D.-X., & Reiter, R. J. (2013). On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. Journal of Pineal Research,54, 245–257.

    Article  CAS  PubMed  Google Scholar 

  • Garrison, W., Dale, A., & Saxena, P. K. (2013). Improved shoot multiplication and development in hybrid hazelnut nodal cultures by ethylenediamine di-2-hydroxy-phenylacetic acid (Fe-EDDHA). Canadian Journal of Plant Science,93, 511–521.

    Article  CAS  Google Scholar 

  • Hand, C., Maki, S., & Reed, B. M. (2014). Modeling optimal mineral nutrition for hazelnut micropropagation. Plant Cell, Tissue and Organ Culture,119, 411–425.

    Article  CAS  Google Scholar 

  • Hand, C., & Reed, B. M. (2014). Minor nutrients are critical for the improved growth of Corylus avellana shoot cultures. Plant Cell, Tissue and Organ Culture,119, 427–439.

    Article  CAS  Google Scholar 

  • Hardeland, R. (2014). Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions. Journal of Experimental Botany,66, 627–646.

    Article  PubMed  CAS  Google Scholar 

  • Hardeland, R., Tan, D. X., & Reiter, R. J. (2009). Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. Journal of Pineal Research,47, 109–126.

    Article  CAS  PubMed  Google Scholar 

  • Hattori, A., Migitaka, H., Iigo, M., Itoh, M., Yamamoto, K., Ohtani-Kaneko, R., et al. (1995). Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International,35, 627–634.

    CAS  PubMed  Google Scholar 

  • Ishihara, A., Hashimoto, Y., Tanaka, C., Dubouzet, J. G., Nakao, T., Matsuda, F., et al. (2008). The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. The Plant Journal,54, 481–495.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara, A., Hashimoto, Y., Miyagawa, H., & Wakasa, K. (2014). Induction of serotonin accumulation by feeding of rice striped stem borer in rice leaves. Plant Signaling & Behavior,3, 714–716.

    Article  Google Scholar 

  • Islam, M. N., Downey, F., & Ng, C. K. Y. (2010). Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis, Scutellaria lateriflora, Scutellaria racemosa, Scutellaria tomentosa and Scutellaria wrightii by LC-DAD-MS. Metabolomics,7, 446–453.

    Article  CAS  Google Scholar 

  • Klockmann, S., Reiner, E., Cain, N., & Fischer, M. (2017). Food Targeting: Geographical origin determination of Hazelnuts (Corylus avellana) by LC-QqQ-MS/MS-based targeted metabolomics application. Journal of Agricultural and Food Chemistry,65, 1456–1465.

    Article  CAS  PubMed  Google Scholar 

  • Krajncic, B., & Nemec, J. (2003). Mechanisms of EDDHA effects on the promotion of floral induction in the long-day plant Lemna minor (L.). Journal of Plant Physiology,160, 143–151.

    Article  CAS  PubMed  Google Scholar 

  • Latawa, J., Shukla, M. R., & Botany, P. S. (2016). An efficient temporary immersion system for micropropagation of hybrid hazelnut. Botany,94, 1–8.

    Article  CAS  Google Scholar 

  • Licea-Moreno, R. J., Contreras, A., Morales, A. V., Urban, I., Daquinta, M., & Gomez, L. (2015). Improved walnut mass micropropagation through the combined use of phloroglucinol and FeEDDHA. Plant Cell, Tissue and Organ Culture,123, 143–154.

    Article  CAS  Google Scholar 

  • Locatelli, M., Coïsson, J. D., Travaglia, F., Cereti, E., Garino, C., D’Andrea, M., et al. (2011). Chemotype and genotype chemometrical evaluation applied to authentication and traceability of “Tonda Gentile Trilobata” hazelnuts from Piedmont (Italy). Food Chemistry,129, 1865–1873.

    Article  CAS  Google Scholar 

  • Malik, M., Warchoł, M., Kwaśniewska, E., & Pawłowska, B. (2017). Biochemical and morphometric analysis of Rosa tomentosa and Rosa rubiginosa during application of liquid culture systems for in vitro shoot production. The Journal of Horticultural Science and Biotechnology,92, 606–613.

    Article  CAS  Google Scholar 

  • Mudge, E. M., Brown, P. N., & Murch, S. J. (2019). The Terroir of Cannabis: Terpene metabolomics as a tool to understand Cannabis sativa selections. Planta Medica,85, 781–796.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, S., David, A., Yadav, S., Baluška, F., & Bhatla, S. C. (2014). Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiologia Plantarum,152, 714–728.

    Article  CAS  PubMed  Google Scholar 

  • Murch, S. J., Alan, A. R., Cao, J., & Saxena, P. K. (2009). Melatonin and serotonin in flowers and fruits of Datura metel L. Journal of Pineal Research,47, 277–283.

    Article  CAS  PubMed  Google Scholar 

  • Murch, S. J., Campbell, S. S. B., & Saxena, P. K. (2001). The role of serotonin and melatonin in plant morphogenesis: Regulation of auxin-induced root organogenesis in in vitro-cultured explants of st. John's Wort (Hypericum perforatum L.). Vitro Cellular & Developmental Biology - Plant,37, 786–793.

    Article  CAS  Google Scholar 

  • Murch, S. J., Rupasinghe, H. P. V., Goodenowe, D., & Saxena, P. K. (2004). A metabolomic analysis of medicinal diversity in Huang-qin (Scutellaria baicalensis Georgi) genotypes: discovery of novel compounds. Plant Cell Reports,23, 419–425.

    Article  CAS  PubMed  Google Scholar 

  • Murch, S. J., Simmons, C. B., & Saxena, P. K. (1997). Melatonin in feverfew and other medicinal plants. The Lancet,350, 1598–1599.

    Article  CAS  Google Scholar 

  • Padmanabhan, P., Shukla, M. R., Sullivan, J. A., & Saxena, P. K. (2017). Iron supplementation promotes in vitro shoot induction and multiplication of Baptisia australis. Plant Cell, Tissue and Organ Culture,129, 145–152.

    Article  CAS  Google Scholar 

  • Parish, T., & Stoker, N. G. (2002). The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology,148, 3069–3077.

    Article  CAS  PubMed  Google Scholar 

  • Pelagio-Flores, R., Muñoz Parra, E., Ortíz-Castro, R., & López-Bucio, J. (2012). Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. Journal of Pineal Research,53, 279–288.

    Article  CAS  PubMed  Google Scholar 

  • Pelagio-Flores, R., Ortíz-Castro, R., Méndez-Bravo, A., Macías-Rodríguez, L., & López-Bucio, J. (2011). Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant & Cell Physiology,52, 490–508.

    Article  CAS  Google Scholar 

  • Pelagio-Flores, R., Ruiz-Herrera, L. F., & López-Bucio, J. (2016). Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid-ethylene signaling. Physiologia Plantarum,158, 92–105.

    Article  CAS  PubMed  Google Scholar 

  • Pernisová, M., Klíma, P., Horák, J., et al. (2009). Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proceedings of the National Academy of Sciences,106, 3609–3614.

    Article  Google Scholar 

  • Pieterse, A. H. (2013). Is flowering in Lemnaceae stress-induced? A review. Aquatic Botany,104, 1–4.

    Article  CAS  Google Scholar 

  • Raghuram, N., & Sopory, S. K. (1995). Evidence for some common signal-transduction events for opposite regulation of nitrate reductase and phytochrome-I gene-expression by light. Plant Molecular Biology,29, 25–35.

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna, A., Giridhar, P., & Ravishankar, G. A. (2011). Phytoserotonin: A review. Plant Signaling & Behavior,6, 800–809.

    Article  CAS  Google Scholar 

  • Rasmussen, S., Parsons, A. J., & Jones, C. S. (2012). Metabolomics of forage plants: a review. Annals of Botany,110, 1281–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter, R. J., Tan, D. X., Zhou, Z., Cruz, M. H. C., Fuentes-Broto, & L., Galano, A. (2015). Phytomelatonin: Assisting plants to survive and thrive. Molecules,20, 7396–7437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert, H. S., & Friml, J. (2009). Auxin and other signals on the move in plants. Nature Chemical Biology,5, 325–332.

    Article  CAS  PubMed  Google Scholar 

  • Ruddick, J. P., Evans, A. K., Nutt, D. J., Lightman, S. L., Rook, G. A. W., & Lowry, C. A. (2006). Tryptophan metabolism in the central nervous system: medical implications. Expert Reviews in Molecular Medicine,8, 1–27.

    Article  PubMed  Google Scholar 

  • Saremba, B. M., Tymm, F. J. M., Baethke, K., Rheault, M. R., Sherif, S. M., Saxena, P. K., et al. (2017). Plant signals during beetle (Scolytus multistriatus) feeding in American elm (Ulmus americana Planch). Plant Signaling & Behavior,12, e1296997.

    Article  CAS  Google Scholar 

  • Sherif, S. M., Erland, L. A., Shukla, M. R., & Saxena, P. K. (2017). Bark and wood tissues of American elm exhibit distinct responses to Dutch elm disease. Scientific Reports,7, 7114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šimura, J., Antoniadi, I., Široká, J., Tarkowská, D., Strnad, M., Ljung, K., et al. (2018). Plant Hormonomics: Multiple phytohormone profiling by targeted metabolomics. Plant Physiology,177, 476–489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skoog, F., & Miller, C. O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology,11, 118–130.

    CAS  PubMed  Google Scholar 

  • Smith, B. R., & Cheng, L. (2006). Fe-EDDHA alleviates chlorosis in `Concord' grapevines grown at high pH. HortScience,41, 1498–1501.

    Article  CAS  Google Scholar 

  • Stowe, B. B. (1959). Occurrence and Metabolism of Simple Indoles in Plants. Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products/Progrès dans la Chimie des Substances Organiques Naturelles (pp. 248–297). Vienna: Springer. https://doi.org/10.1007/978-3-7091-8052-5_5.

    Chapter  Google Scholar 

  • Tavallali, V. (2018). Effect of iron nano chelate on antioxidant activity, polyphenolic contents and essentil oil composition of Portulaca oleracea L. Acta Scientiarum Polonorum Hortorum Cultus,17, 179–190.

    Article  Google Scholar 

  • Turi, C. E., & Murch, S. J. (2013). Targeted and untargeted phytochemistry of Ligusticum canbyi: indoleamines, phthalides, antioxidant potential, and use of metabolomics as a hypothesis-generating technique for compound discovery. Planta Medica,79, 1370–1379.

    Article  CAS  PubMed  Google Scholar 

  • Turi, C. E., Axwik, K. E., & Murch, S. J. (2014a). In vitro conservation, phytochemistry, and medicinal activity of Artemisia tridentata Nutt.: metabolomics as a hypothesis-generating tool for plant tissue culture. Plant Growth Regulation,74, 239–250.

    Article  CAS  Google Scholar 

  • Turi, C. E., Axwik, K. E., Smith, A., Jones, A. M. P., Saxena, P. K., & Murch, S. J. (2014b). Galanthamine, an anticholinesterase drug, effects plant growth and development in Artemisia tridentate Nutt. via modulation of auxin and neutrotransmitter signaling. Plant Signaling & Behavior,9, e28645.

    Article  Google Scholar 

  • Turi, C. E., Finley, J., Shipley, P. R., Murch, S. J., & Brown, P. N. (2015). Metabolomics for phytochemical discovery: Development of statistical approaches using a cranberry model system. Journal of Natural Products,78, 953–966.

    Article  CAS  PubMed  Google Scholar 

  • Wojtania, A., & Matysiak, B. (2018). In vitro propagation of Rosa “Konstancin” (R. rugosa × R. beggeriana), a plant with high nutritional and pro-health value. Folia Horticulturae,30, 259–267.

    Article  Google Scholar 

  • Woodward, A. W., & Bartel, B. (2005). Auxin: Regulation, action, and interaction. Annals of Botany,95, 707–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research,37, W652–W660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols,6, 743–760.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X., & Reed, B. M. (1995). A micropropagation system for hazelnuts (Corylus species). HortScience,30, 120–123.

    Article  Google Scholar 

Download references

Funding

This study was funded by the Gosling Research Institute for Plant Preservation and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

SJM & PKS: Conceptualization; SJM, CET & LAEE: Methodology/Investigation; SJM, CET & LAEE: Data Analysis and Interpretation; SJM & PKS: Funding. All authors participated in review of the manuscript and have approved its submission in the current format.

Corresponding author

Correspondence to Susan J. Murch.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 346 kb)

Table S1: Summary of metabolomic analysis for filbert cultures treated with 0, 230, 460, and 690 µM Fe-EDDHA.

Table S2: Significant compounds showing increasing and decreasing trends in response to Fe-EDDHA treatment (0, 230, 460, 690 µM).

Table S3. SAM significant metabolites complete list of all features.

Table S4. Complete list of hormonomics analysis.

Table S5. Complete list of biotransformations of serotonin, melatonin and tryptophan.

Table S6: Summary of increasing and decreasing biotransformations in response to Fe-EDDHA treatment (0, 230, 460, 690 µM): Metabolite IDs listed below correspond to those listed in Table 2 and their corresponding biotransformation (i.e. +CH3, +NH2, - H2).

Supplementary file2 (XLSX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erland, L.A.E., Turi, C.E., Saxena, P.K. et al. Metabolomics and hormonomics to crack the code of filbert growth. Metabolomics 16, 62 (2020). https://doi.org/10.1007/s11306-020-01684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-01684-0

Keywords

Navigation