Skip to main content
Log in

Eulerian Model for Simulating Multi-Fluid Flows with an Arbitrary Number of Immiscible Compressible Components

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A (\(2N+1\))-equation model to simulate the flow of N (\(\textit{N}\ge 3\)) immiscible compressible fluids separated with interfaces is proposed. The model is based on the single velocity diffuse-interface method and includes \(N-1\) advection equations for fluid volume fractions. Solving the advection equations with a non-linear high-order scheme commonly results in the violation of the non-negativity constraint that any arbitrary partial sum of volume fractions should be in the interval [0, 1]. First, it is shown that this constraint can be met if the \(N-1\) advection equations are solved for some rational functions of volume fractions rather than for volume fractions themselves. The non-linear sub-cell slope reconstruction (MUSCL-type and THINC) with the proposed rational advection functions is proved to be non-oscillatory and provide the distribution of volume fractions satisfying the non-negativity constraint. Second, it is proved that the PV property (preservation of constant-pressure and constant-velocity equilibrium) is maintained providing that linear functions of volume fractions are used in the advection equations. We suggest two ways for resolving the contradiction in choosing the advection functions (functions of volume fractions) in accordance with the non-negativity constraint and the PV property. We also adopt two numerical methods—the Roe-type scheme and the HLLC scheme to solve the governing equations. Finally, the proposed numerical model is tested with several benchmark problems. The results obtained demonstrate robustness and effectiveness of the proposed numerical approach in solving multi-fluid flows with large interface deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125(1), 150–160 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181(2), 577–616 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Baer, M., Nunziato, J.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow 12(6), 861–889 (1986)

    MATH  Google Scholar 

  4. Ball, G., Howell, B., Leighton, T., Schofield, M.: Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation. Shock Waves 10(4), 265–276 (2000)

    MATH  Google Scholar 

  5. Bates, K.R., Nikiforakis, N., Holder, D.: Richtmyer–Meshkov instability induced by the interaction of a shock wave with a rectangular block of SF6. Phys. Fluids 19(3), 323 (2007)

    MATH  Google Scholar 

  6. Breil, J., Harribey, T., Maire, P.H., Shashkov, M.: A multi-material reale method with MOF interface reconstruction. Comput. Fluids 83, 115–125 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Cloete, S., Olsen, J.E., Skjetne, P.: CFD modeling of plume and free surface behavior resulting from a sub-sea gas release. Appl. Ocean Res. 31(3), 220–225 (2009)

    Google Scholar 

  8. Cocchi, J.P., Saurel, R.: A Riemann problem based method for the resolution of compressible multimaterial flows. J. Comput. Phys. 137(2), 265–298 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Coralic, V., Colonius, T.: Finite-volume weno scheme for viscous compressible multicomponent flows. J. Comput. Phys. 274, 95–121 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Darelius, A., Rasmuson, A., van Wachem, B., Björn, I.N., Folestad, S.: CFD simulation of the high shear mixing process using kinetic theory of granular flow and frictional stress models. Chem. Eng. Sci. 63(8), 2188–2197 (2008)

    Google Scholar 

  11. Després, B., Lagoutière, F.: Contact discontinuity capturing schemes for linear advection and compressible gas dynamics. J. Sci. Comput. 16(4), 479–524 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Dyadechko, V., Shashkov, M.: Moment-of-fluid interface reconstruction. Los Alamos Report LA-UR-05-7571 (2005)

  13. Dyadechko, V., Shashkov, M.: Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 227(11), 5361–5384 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Fanneløp, T., Hirschberg, S., Küffer, J.: Surface current and recirculating cells generated by bubble curtains and jets. J. Fluid Mech. 229, 629–657 (1991)

    Google Scholar 

  15. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Friedl, M.J., Fanneløp, T.: Bubble plumes and their interaction with the water surface. Appl. Ocean Res. 22(2), 119–128 (2000)

    Google Scholar 

  17. Friess, M.B., Kokh, S.: Simulation of sharp interface multi-material flows involving an arbitrary number of components through an extended five-equation model. J. Comput. Phys. 273(273), 488–519 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Galera, S., Maire, P.H., Breil, J.: A two-dimensional unstructured cell-centered multi-material ALE scheme using vof interface reconstruction. J. Comput. Phys. 229(16), 5755–5787 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Glimm, J., Grove, J.W., Li, X.L., Shyue, K.M., Zeng, Y., Zhang, Q.: Three-dimensional front tracking. SIAM J. Sci. Comput. 19(3), 703–727 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Glimm, J., Li, X., Liu, Y., Xu, Z., Zhao, N.: Conservative front tracking with improved accuracy. SIAM J. Numer. Anal. 41(5), 1926–1947 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Ha, C.T., Park, W.G., Jung, C.M.: Numerical simulations of compressible flows using multi-fluid models. Int. J. Multiph. Flow 74, 5–18 (2015)

    MathSciNet  Google Scholar 

  22. Harten, A.: The artificial compression method for computation of shocks and contact discontinuities. Math. Comput. 32(142), 363–389 (1978)

    MATH  Google Scholar 

  23. Harten, A.: The artificial compression method for computation of shocks and contact discontinuities. Commun. Pure Appl. Math. 30(5), 611–638 (2010)

    MATH  Google Scholar 

  24. He, Z., Tian, B., Zhang, Y., Gao, F.: Characteristic-based and interface-sharpening algorithm for high-order simulations of immiscible compressible multi-material flows. J. Comput. Phys. 333, 247–268 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    MATH  Google Scholar 

  26. Hérard, J.M.: A three-phase flow model. Math. Comput. Modell. 45(5), 732–755 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Jaouen, S., Lagoutière, F.: Numerical transport of an arbitrary number of components. Comput. Methods Appl. Mech. Eng. 196(33), 3127–3140 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Johnsen, E., Colonius, T.: Implementation of weno schemes in compressible multicomponent flow problems. J. Comput. Phys. 219(2), 715–732 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Johnsen, E., Ham, F.: Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows. J. Comput. Phys. 231(17), 5705–5717 (2012)

    MathSciNet  Google Scholar 

  30. Kapila, A., Menikoff, R., Bdzil, J., Son, S., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13(10), 3002–3024 (2001)

    MATH  Google Scholar 

  31. Kedrinsky, V.K.: Hydrodynamics of Explosion. Experiment and Models. Publishing House of Siberian Branch of the Russian Academy of Sciences, Siberia (2000). (in Russian)

    Google Scholar 

  32. Kokh, S., Lagoutière, F.: An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model. J. Comput. Phys. 229(8), 2773–2809 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Kucharik, M., Breil, J., Galera, S., Maire, P.H., Berndt, M., Shashkov, M.: Hybrid remap for multi-material ALE. Comput. Fluids 46(1), 293–297 (2011)

    MATH  Google Scholar 

  34. Liu, T., Khoo, B., Yeo, K.: The simulation of compressible multi-medium flow: II. Applications to 2D underwater shock refraction. Comput. Fluids 30(3), 315–337 (2001)

    Google Scholar 

  35. Luo, H., Baum, J.D., Löhner, R.: On the computation of multi-material flows using ALE formulation. J. Comput. Phys. 194(1), 304–328 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Menshov, I., Zakharov, P.: On the composite Riemann problem for multi-material fluid flows. Int. J. Numer. Methods Fluids 76(2), 109–127 (2015)

    MathSciNet  Google Scholar 

  37. Miller, S., Jasak, H., Boger, D., Paterson, E., Nedungadi, A.: A pressure-based, compressible, two-phase flow finite volume method for underwater explosions. Comput. Fluids 87, 132–143 (2013). USNCCM Moving Boundaries

    MathSciNet  MATH  Google Scholar 

  38. Mulder, W., Osher, S., Sethian, J.A.: Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100(2), 209–228 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Nourgaliev, R.R., Liou, M.S., Theofanous, T.G.: Numerical prediction of interfacial instabilities: sharp interface method (SIM). J. Comput. Phys. 227(8), 3940–3970 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225–246 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Olsson, E., Kreiss, G., Zahedi, S.: A conservative level set method for two phase flow. J. Comput. Phys. 225(1), 785–807 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Osher, S., Fedkiw, R.: Level Sets and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, Berlin (2002)

    MATH  Google Scholar 

  43. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    MathSciNet  MATH  Google Scholar 

  44. Rzehak, R., Kriebitzsch, S.: Multiphase CFD-simulation of bubbly pipe flow: a code comparison. Int. J. Multiph. Flow 68, 135–152 (2015)

    MathSciNet  Google Scholar 

  45. Rzehak, R., Ziegenhein, T., Kriebitzsch, S., Krepper, E., Lucas, D.: Unified modeling of bubbly flows in pipes, bubble columns, and airlift columns. Chem. Eng. Sci. 157, 147–158 (2017)

    Google Scholar 

  46. Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999)

    MathSciNet  MATH  Google Scholar 

  47. Saurel, R., Abgrall, R.: A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21(3), 1115–1145 (1999)

    MathSciNet  MATH  Google Scholar 

  48. Saurel, R., Petitpas, F., Berry, R.A.: Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228(5), 1678–1712 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Shin, Y.S., Chisum, J.E.: Modeling and simulation of underwater shock problems using a coupled Lagrangian–Eulerian analysis approach. Shock Vib. 4(1), 1–10 (1997)

    Google Scholar 

  50. Shu, C.: Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws. Springer, Berlin (1998)

    MATH  Google Scholar 

  51. Shukla, R.K.: Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows. J. Comput. Phys. 276(276), 508–540 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Shukla, R.K., Pantano, C., Freund, J.B.: An interface capturing method for the simulation of multi-phase compressible flows. J. Comput. Phys. 229(19), 7411–7439 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Shyue, K.M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142(1), 208–242 (1998)

    MathSciNet  MATH  Google Scholar 

  54. Shyue, K.M.: A fluid-mixture type algorithm for compressible multicomponent flow with Van der Waals equation of state. J. Comput. Phys. 156(1), 43–88 (1999)

    MathSciNet  MATH  Google Scholar 

  55. Shyue, K.M.: A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions. J. Comput. Phys. 215(1), 219–244 (2006)

    MathSciNet  MATH  Google Scholar 

  56. Shyue, K.M., Xiao, F.: An eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach. J. Comput. Phys. 268(2), 326–354 (2014)

    MathSciNet  MATH  Google Scholar 

  57. So, K.K., Hu, X.Y., Adams, N.A.: Anti-diffusion interface sharpening technique for two-phase compressible flow simulations. J. Comput. Phys. 231(11), 4304–4323 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Terashima, H., Tryggvason, G.: A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J. Comput. Phys. 228(11), 4012–4037 (2009)

    MATH  Google Scholar 

  59. Tian, B., Shen, W., Jiang, S., Wang, S., Yan, L.: A global arbitrary Lagrangian–Eulerian method for stratified Richtmyer–Meshkov instability. Comput. Fluids 46(1), 113–121 (2011)

    MathSciNet  MATH  Google Scholar 

  60. Tiwari, A., Freund, J.B., Pantano, C.: A diffuse interface model with immiscibility preservation. J. Comput. Phys. 252(C), 290–309 (2013)

    MathSciNet  MATH  Google Scholar 

  61. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009)

    MATH  Google Scholar 

  62. Xiao, F., Honma, Y., Kono, T.: A simple algebraic interface capturing scheme using hyperbolic tangent function. Int. J. Numer. Methods Fluids 48(9), 1023–1040 (2005)

    MATH  Google Scholar 

  63. Zhang, C., Menshov, I.: Eulerian modelling of compressible three-fluid flows with surface tension. Russ. J. Numer. Anal. Math. Modell. 34, 225–240 (2019)

    MathSciNet  MATH  Google Scholar 

  64. Zhang, C., Menshov, I.: Using the composite Riemann problem solution for capturing interfaces in compressible two-phase flows. Appl. Math. Comput. 363, 124610 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author thanks the China Scholarship Council for their financial support. Computational resources were provided by the Keldysh Institute for Applied Mathematics RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 98424 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Menshov, I. Eulerian Model for Simulating Multi-Fluid Flows with an Arbitrary Number of Immiscible Compressible Components. J Sci Comput 83, 31 (2020). https://doi.org/10.1007/s10915-020-01214-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01214-z

Keywords

Mathematics Subject Classification

Navigation