Skip to main content
Log in

Electrodeposition of functionally graded Ni-W/Er2O3 rare earth nanoparticle composite film

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Multi-layered functionally graded (FG) structure Ni-W/Er2O3 nanocomposite films were prepared by continuously changing the deposition parameters, in which the Er2O3 and W contents varied with thickness. The microstructure and chemical composition of the electrode-posited Ni-W/Er2O3 films were determined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The anti-corrosion and wear properties of the electrodeposition films were investigated by electrochemical measurement and ball-on-disk friction test. The microhardness distribution of the cross section of nanocomposites was measured by nanoindentation. The results showed that with decreasing agitation rate or increasing average current density, the contents of Er2O3 nanoparticles and tungsten were distributed in a gradient along the thickness, and the contents on the surface were larger. By comparison, FG Ni-W/Er2O3 films had better anti-corrosion and wear properties than the uniform Ni-W/Er2O3 films. Atomic force microscopy (AFM) and profilometry measurements indicated that Er2O3 nanoparticles had an effect on the surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Bostani, N.P. Ahmadi, S. Yazdani, and R. Arghavanian, Synthesis and characterization of functionally gradient Ni-ZrO2 composite coating, Prot. Met. Phys. Chem. Surf., 54(2018), No. 2, p. 222.

    CAS  Google Scholar 

  2. B.S. Li, W.W. Zhang, W. Zhang, and Y.X. Huan, Preparation of Ni-W/SiC nanocomposite coatings by electrochemical deposition, J. Alloys Compd., 702(2017), p. 38.

    CAS  Google Scholar 

  3. B.S, Li, W.W, Zhang, Y.X, Huan, and J. Dong, Synthesis and characterization of Ni-B/Al2O3 nanocomposite coating by electrodeposition using trimethylamine borane as boron precursor, Surf. Coat. Technol., 337(2018), p. 186.

    CAS  Google Scholar 

  4. L. Shi, C.F. Sun, P. Gao, F. Zhou, and W.M. Liu, Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating, Appl. Surf. Sci., 252(2006), No. 10, p. 3591.

    CAS  Google Scholar 

  5. J.X, Zhang, X.M. Wang, D.D. Qin, Z.H. Xue, and X.Q. Lu, Fabrication of iron-doped cobalt oxide nanocomposite films by electrodeposition and application as electrocatalyst for oxygen reduction reaction, Appl. Surf. Sci., 320(2014), p. 73.

    CAS  Google Scholar 

  6. L.P. Wang, Y. Gao, Q.J. Xue, H.W. Liu, and T. Xu, Graded composition and structure in nanocrystalline Ni-Co alloys for decreasing internal stress and improving tribological properties, J. Phys. D: Appl. Phys., 38(2005), No. 8, p. 1318.

    CAS  Google Scholar 

  7. U. Wiklund, J. Gunnars, and S. Hogmark, Influence of residual stresses on fracture and delamination of thin hard coatings, Wear, 232(1999), No. 2, p. 262.

    CAS  Google Scholar 

  8. T. Yamasaki, P. Schloßmacher, K. Ehrlich, and Y. Ogino, Formation of amorphous electrodeposited Ni-W alloys and their nanocrystallization, Nanostruct. Mater., 10(1998), No. 3, p. 375.

    CAS  Google Scholar 

  9. Y.S. Dong, P.H. Lin, and H.X. Wang, Electroplating preparation of Ni-Al2O3 graded composite coatings using a rotating cathode, Surf. Coat. Technol., 200(2006), No. 11, p. 3633.

    CAS  Google Scholar 

  10. K.A. Khor and Y.W. Gu, Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCo-CrAlY coatings, Mater. Sci. Eng. A, 277(2000), No. 1–2, p. 64.

    Google Scholar 

  11. X. Peng, J. Yan, L. Zheng, and F. Wang, Oxidation of a novel CeO2 — dispersed chromium coating in wet air, Mater. Corros., 62(2011), No. 6, p. 514.

    CAS  Google Scholar 

  12. S. Put, J. Vleugels, and O. Van der Biest, Functionally graded WC-Co materials produced by electrophoretic deposition, Scripta Mater., 45(2001), No. 10, p. 1139.

    CAS  Google Scholar 

  13. B.L. Han and X.C. Lu, Effect of La2O3 on microstructure, mechanical and tribological properties of Ni-W coatings, Chin. Sci. Bull., 54(2009), No. 24, p. 4566.

    CAS  Google Scholar 

  14. Z.C. Guo and X.Y. Zhu, Studies on properties and structure of electrodeposited RE-Ni-W-B-SiC composite coating, Mater. Sci. Eng. A, 363(2003), No. 1–2, p. 325.

    Google Scholar 

  15. B.S. Li, W.W. Zhang, D.D. Li, Y.X. Huan, and J. Dong, Micro-structural, surface and electrochemical properties of a novel Ni-B/Ni-W-BN duplex composite coating by co-electrodeposition, Appl. Surf. Sci., 458(2018), p. 305.

    CAS  Google Scholar 

  16. E. García-Lecina, I. García-Urrutia, J.A. Díez, M. Salvo, F. Smeacetto, G. Gautier, R. Seddon, and R. Martin, Electrochemical preparation and characterization of Ni/SiC compositionally graded multilayered coatings, Electrochim. Acta, 54(2009), No. 9, p. 2556.

    Google Scholar 

  17. C.T. Low, R.G.A. Wills, and F.C. Walsh, Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surf. Coat. Technol., 201(2006), No. 1–2, p. 371.

    CAS  Google Scholar 

  18. P. Indyka, E. Beltowska-Lehman, L. Tarkowski, A. Bigos, and E. Garcia-Lecina, Structure characterization of nanocrystalline Ni-W alloys obtained by electrodeposition, J. Alloys Compd., 590(2014), p. 75.

    CAS  Google Scholar 

  19. S. Lee and S. Kim, Electrochemical synthesis and characterization of erbium oxide, Ceram. Int., 42(2016), No. 16, p. 18425.

    CAS  Google Scholar 

  20. M.F. Zhang, C.F. Zhu, C.P. Yang, and Y.N. Lv, Preparation of amorphous Ni-W coating for the current collector of Na/S battery by electrodeposition, Surf. Coat. Technol., 346(2018), p. 40.

    CAS  Google Scholar 

  21. P.A. Orrillo, S.B. Ribotta, L.M. Gassa, G. Benítez, R.C. Salvarezza, and M.E. Vela, Phosphonic acid functionalization of nanostructured Ni-W coatings on steel, Appl. Surf. Sci., 433(2018), p. 292.

    CAS  Google Scholar 

  22. E.W. Brooman, Corrosion performance of environmentally acceptable alternatives to cadmium and chromium coatings: Chromium—Part II, Met. Finish., 98(2000), No. 8, p. 39.

    CAS  Google Scholar 

  23. S. Kirihara, Y. Umeda, K. Tashiro, H. Honma, and O. Takai, Development of Ni-W alloy plating as a substitution of hard chromium plating, Trans. Mater. Res. Soc. Jpn, 41(2016), No. 1, p. 35.

    CAS  Google Scholar 

  24. L. Hao, J. Wei, and F.X. Gan, Electroless Ni-P coating on W-Cu composite via three different activation processes, Surf. Eng., 25(2009), No. 5, p. 372.

    CAS  Google Scholar 

  25. S.A. Lajevardi, T. Shahrabi, and J.A. Szpunar, Tribological properties of functionally graded Ni-Al2O3 nanocomposite coating, J. Electrochem. Soc., 164(2017), No. 6, p. D275.

    CAS  Google Scholar 

  26. H. Li, Y. He, T. He, D.Y. Qing, F.J. Luo, Y. Fan, and X. Chen, Ni-W/BN(h) electrodeposited nanocomposite coating with functionally graded microstructure, J. Alloys Compd., 704(2017), p. 32.

    CAS  Google Scholar 

  27. D.V. Suvorov, G.P. Gololobov, D.Y. Tarabrin, E.V. Slivkin, S.M. Karabanov, and A. Tolstoguzov, Electrochemical deposition of Ni-W crack-free coatings, Coatings, 8(2018), No. 7, p. 233.

    Google Scholar 

  28. N. Eliaz, T.M. Sridhar, and E. Gileadi, Synthesis and characterization of nickel tungsten alloys by electrodeposition, Electrochim. Acta, 50(2005), No. 14, p. 2893.

    CAS  Google Scholar 

  29. A. Chianpairot, G. Lothongkum, C.A. Schuh, and Y. Boonyongmaneerat, Corrosion of nanocrystalline Ni-W alloys in alkaline and acidic 3.5wt% NaCl solutions, Corros. Sci., 53(2011), No. 3, p. 1066.

    CAS  Google Scholar 

  30. O. Younes and E. Gileadi, Electroplating of high tungsten content Ni/W alloys, Electrochem. Solid-State Lett., 3(2000), No. 12, p. 543.

    CAS  Google Scholar 

  31. O. Younes and E. Gileadi, Electroplating of Ni/W alloys: I. Ammoniacal citrate baths, J. Electrochem. Soc., 149(2002), No. 2, p. C100.

    CAS  Google Scholar 

  32. M. Ma, V.S. Donepudi, G. Sandi, Y.K. Sun, and J. Prakash, Electrodeposition of nano-structured nickel-21% tungsten alloy and evaluation of oxygen reduction reaction in a 1% sodium hydroxide solution, Electrochim. Acta, 49(2004), No. 25, p. 4411.

    CAS  Google Scholar 

  33. K.R. Sriraman, S.G.S. Raman, and S.K. Seshadri, Synthesis and evaluation of hardness and sliding wear resistance of electrode-posited nanocrystalline Ni-W alloys, Mater. Sci. Eng. A, 418(2006), No. 1–2, p. 303.

    Google Scholar 

  34. N. Guglielmi, Kinetics of the deposition of inert particles from electrolytic baths, J. Electrochem. Soc., 119(1972), No. 8, p. 1009.

    CAS  Google Scholar 

  35. D. Landolt, Electrochemical and materials science aspects of alloy deposition, Electrochim. Acta, 39(1994), No. 8–9, p. 1075.

    CAS  Google Scholar 

  36. M.H. Allahyarzadeh, M. Aliofkhazraei, A.R.S. Rouhaghdam, and V. Torabinejad, Electrodeposition of Ni-W-Al2O3 nanocomposite coating with functionally graded microstructure, J. Alloys Compd., 666(2016), p. 217.

    CAS  Google Scholar 

  37. B.S. Li, D.D. Li, W. Chen, Y.Y. Liu, J. Zhang, Y.L. Wei, W.W. Zhang, and W.C. Jia, Effect of current density and deposition time on microstructure and corrosion resistance of Ni-W/TiN nanocomposite coating, Ceram. Int., 45(2019), No. 4, p. 4870.

    CAS  Google Scholar 

  38. R.J. Sen, S. Das, and K. Das, Effect of stirring rate on the microstructure and microhardness of Ni-CeO2 nnnooompoiite coating and investigation of the corrosion property, Surf. Coat. Technol., 205(2011), No. 13–14, p. 3847.

    CAS  Google Scholar 

  39. F.Z. Yang, Y.F. Guo, L. Huang, S.K. Xu, and S.M. Zhou, Electrodeposition, structure and corrosion resistance of nanocrystalline Ni-W alloy, Chin. J. Chem., 22(2004), No. 3, p. 228.

    CAS  Google Scholar 

  40. S.M.L. Baghal, M.H. Sohi, and A. Amadeh, A functionally gradient nano-Ni-Co/SiC composite coating on aluminum and its tribological properties, Surf. Coat. Technol., 206(2012), No. 19–20, p. 4032.

    Google Scholar 

  41. L.M. Chang, Z.T. Wang, S.Y. Shi, and W. Liu, Study on microstructure and properties of electrodeposited Ni-W alloy coating with glycolic acid system, J. Alloys Compd., 509(2011), No. 5, p. 1501.

    CAS  Google Scholar 

  42. Y.W. Yao, S.W. Yao, L. Zhang, and H.Z. Wang, Electrodeposition and mechanical and corrosion resistance properties of Ni-W/SiC nanocomposite coatings, Mater. Lett., 61(2007), No. 1, p. 67.

    CAS  Google Scholar 

  43. K.H. Hou, H.T. Wang, H.H. Sheu, and M.D. Ger, Preparation and wear resistance of electrodeposited Ni-W/diamond composite coatings, Appl. Surf. Sci., 308(2014), p. 372.

    CAS  Google Scholar 

  44. N. Udompanit, P. Wangyao, S. Henpraserttae, and Y. Boonyongmaneerat, Wear response of composition-modulated multilayer Ni-W coatings, Adv. Mater. Res., 1025–1026(2014), p. 302.

    Google Scholar 

  45. H.T. Wang, H.H. Sheu, M.D. Ger, and K.H. Hou, The effect of heat treatment on the microstructure and mechanical properties of electrodeposited nanocrystalline Ni-W/diamond composite coatings, Surf. Coat. Technol., 259(2014), p. 268.

    CAS  Google Scholar 

  46. Y.W. Yao, Preparation, mechanical property and wear resistance of Ni-W/Al2O3 composite coatings, Surf. Eng., 24(2008), No. 3, p. 226.

    CAS  Google Scholar 

  47. K.H. Hou and Y.C. Chen, Preparation and wear resistance of pulse electrodeposited Ni-W/Al2O3 composite coatings, Appl. Surf. Sci., 257(2011), No. 15, p. 6340.

    CAS  Google Scholar 

  48. E. Beltowska-Lehman, P. Indyka, A. Bigos, M. Kot, and L. Tarkowski, Electrodeposition of nanocrystalline Ni-W coatings strengthened by ultrafine alumina particles, Surf. Coat. Technol., 211(2012), p. 62.

    CAS  Google Scholar 

  49. L.P. Wang, J.Y. Zhang, Z.X. Zeng, Y.M. Lin, L.T. Hu, and Q.J. Xue, Fabrication of a nanocrystalline Ni-Co/CoO functionally graded layer with excellent electrochemical corrosion and tribological performance, Nanotechnology, 17(2006), No. 18, p. 4614.

    CAS  Google Scholar 

  50. B. Bakhit, A. Akbari, F. Nasirpouri, and M.G. Hosseini, Corrosion resistance of Ni-Co alloy and Ni-Co/SiC nanocomposite coatings electrodeposited by sediment codeposition technique, Appl. Surf. Sci., 307(2014), p. 351.

    CAS  Google Scholar 

  51. F. Daneshvar-Fatah and F. Nasirpouri, A study on electrodeposition of Ni-noncovalnetly treated carbon nanotubes nanocomposite coatings with desirable mechanical and anti-corrosion properties, Surf. Coat. Technol., 248(2014), p. 63.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51625504, 51675421, 51427805, 51435002, 91748209, 51705406, and 91748209) and the Joint fund of the Ministry of Education of China (Nos. 6141A0231 and 6141A0202). This work was partially sponsored by National Key R&D Program of China (Nos. 2016YFF0100700 and 2017YFF0204803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-zhong Liu or Bang-dao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Gq., Liu, Hz., Chen, Bd. et al. Electrodeposition of functionally graded Ni-W/Er2O3 rare earth nanoparticle composite film. Int J Miner Metall Mater 27, 818–829 (2020). https://doi.org/10.1007/s12613-019-1953-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1953-z

Keywords

Navigation