Skip to main content
Log in

Optimization of ECAP—RAP process for preparing semisolid billet of 6061 aluminum alloy

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

6061 aluminum alloy semisolid billet was prepared by the equal-channel angular processing (ECAP)—recrystallization and partial (RAP) process (a combination of equal-channel angular processing and recrystallization and partial remelting). The effects of different process parameters on the alloy microstructure were studied and the quantitative relationship between the process parameters and microstructure was established by response surface methodology (RSM) to optimize the process parameters. According to the orthogonal test, the holding temperature and holding time of the four ECAP—RAP process parameters were found to have the greatest impact on the microstructural characteristics, including average grain size and average shape factor. Through RSM, it was also found that when the average grain size or the average shape factor is optimized separately, another will be degraded. When the two indexes were simultaneously considered, the optimal process parameters were found to be a holding temperature of 623°C and holding time of 13 min, and the corresponding average grain size and average shape factor were 35.97 µm and 0.8535, respectively. Moreover, comparing the experimental and predicted values, the reliability of the established response surface model was verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.N. Chen, G. Liu, X.M. Zhang, and Y.Q. Zhao, Influence of semisolid forging ratio on the microstructure and mechanical properties of Ti14 alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 266.

    Article  CAS  Google Scholar 

  2. W. Liu, D.D. Yang, G.F. Quan, Y.B. Zhang, and D.D. Yao, Microstructure evolution of semisolid Mg–2Zn–0.5Y alloy during isothermal heat treatment, Rare Met. Mater. Eng., 45(2016), No. 8, p. 1967.

    Article  CAS  Google Scholar 

  3. M.J. Nayyeri and K. Dehghani, Microstructure evolution in as-cast and SIMA-processed AE42 magnesium alloy, J. Mater. Eng. Perform., 23(2014), No. 9, p. 3077.

    Article  CAS  Google Scholar 

  4. D.T. Wang, H.T. Zhang, L. Li, H.L. Wu, K. Qin, and J.Z. Cui, The evolution of microstructure and mechanical properties during high-speed direct-chill casting in different Al–Mg2Si in situ composites, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1080.

    Article  CAS  Google Scholar 

  5. F. Ozturk, A. Sisman, S. Toros, S. Kilic, and R.C. Picu, Influence of aging treatment on mechanical properties of 6061 aluminum alloy, Mater. Des., 31(2010), No. 2, p. 972.

    Article  CAS  Google Scholar 

  6. M. Mansourinejad and B. Mirzakhani, Influence of sequence of cold working and aging treatment on mechanical behaviour of 6061 aluminum alloy, Trans. Nonferrous Met. Soc. China, 22(2012), No. 9, p. 2072.

    Article  CAS  Google Scholar 

  7. Q. Chen, Z.D. Zhao, G. Chen, and B. Wang, Effect of accumulative plastic deformation on generation of spheroidal structure, thixoformability and mechanical properties of large-size AM60 magnesium alloy, J. Alloys Compd., 632(2015), p. 190.

    Article  CAS  Google Scholar 

  8. C.Q. Zhao and R.B. Song, Evolution of microstructure and mechanical properties for 9Cr18 stainless steel during thixoforming, Mater. Des., 59(2014), p. 502.

    Article  CAS  Google Scholar 

  9. S.Z. Shang, G.M. Lu, X.L. Tang, Z.X. Zhao, and C.M. Wu, Deformation mechanism and forming properties of 6061Al alloys during compression in semi-solid state, Trans. Nonferrous Met. Soc. China, 20(2010), No. 9, p. 1725.

    Article  CAS  Google Scholar 

  10. Y. Xu, J.B. Jia, C. Chen, W.C. Liu, S.Y. Luo, Y. Yang, and L.X. Hu, Thixoforming of semi-solid AZ91D alloy with high solid fraction prepared by the RUE-based SIMA process, Int. J. Adv. Manuf. Technol., 93(2017), No. 9–12, p. 4317.

    Article  Google Scholar 

  11. F. Wang, W.Q. Zhang, W.L. Xiao, H. Yamagata, and C.L. Ma, Microstructural evolution during reheating of A356 machining chips at semisolid state, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 891.

    Article  CAS  Google Scholar 

  12. H.V. Atkinson, Modelling the semisolid processing of metallic alloys, Prog. Mater. Sci., 50(2005), No. 3, p. 341.

    Article  CAS  Google Scholar 

  13. C.P. Wang, Z.J. Tang, H.S. Mei, L. Wang, R.Q. Li, and D.F. Li, Formation of spheroidal microstructure in semi-solid state and thixoforming of 7075 high strength aluminum alloy, Rare Met., 34(2015), No. 10, p. 710.

    Article  CAS  Google Scholar 

  14. R. Meshkabadi, G. Faraji, A. Javdani, A. Fata, and V. Pouyafar, Microstructure and homogeneity of semi-solid 7075 aluminum tubes processed by parallel tubular channel angular pressing, Met. Mater. Int., 23(2017), No. 5, p. 1019.

    Article  CAS  Google Scholar 

  15. J.F. Jiang, Y. Wang, and H.V. Atkinson, Microstructural coarsening of 7005 aluminum alloy semisolid billets with high solid fraction, Mater. Charact., 90(2014), p. 52.

    Article  CAS  Google Scholar 

  16. K.M. Xue, G.B. Mi, and Q.R. Wang, Compound fabrication technology of semi-solid billet of Al–Si alloy based on SIMA method, Trans. Nonferrous Met. Soc. China, 16(2006), No. 3, p. 1224.

    CAS  Google Scholar 

  17. L.P. Wang, W.Y. Jiang, T. Chen, Y.C. Feng, H.Y. Zhou, S.C. Zhao, Z.Q. Liang, and Y. Zhu, Spheroidal microstructure formation and thixoforming of AM60B magnesium alloy prepared by SIMA process, Trans. Nonferrous Met. Soc. China, 22(2012), p. 435.

    Article  CAS  Google Scholar 

  18. J.L. Fu, K.K. Wang, X.W. Li, and H.K. Zhang, Microstructure evolution and thixoforming behavior of 7075 aluminum alloy in the semi-solid state prepared by RAP method, Int. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1404.

    Article  CAS  Google Scholar 

  19. A.A. Khamei, K. Dehghani, and R. Mahmudi, Modeling the hot ductility of AA6061 aluminum alloy after severe plastic deformation, JOM, 67(2015), No. 5, p. 966.

    Article  CAS  Google Scholar 

  20. T. Yuan, J.H. Jiang, L.S. Wang, and A.B. Ma, Overview on the microstructure and mechanical properties of ultrafine-grained Al–Li alloys produced by severe plastic deformation, Rare Met. Mater. Eng., 48(2019), No. 1, p. 55.

    Google Scholar 

  21. M. Aghaie-Khafri and D. Azimi-Yancheshme, The Study of an Al–Fe–Si alloy after equal-channel angular pressing (ECAP) and subsequent semisolid heating, JOM, 64(2012), No. 5, p. 585.

    Article  CAS  Google Scholar 

  22. K.N. Campo and E.J. Zoqui, Thixoforming of an ECAPed aluminum A356 alloy: Microstructure evolution, rheological behavior, and mechanical properties, Metall. Mater. Trans. A, 47(2016), No. 4, p. 1792.

    Article  CAS  Google Scholar 

  23. J.L. Fu, H.J. Jiang, and K.K. Wang, Influence of processing parameters on microstructural evolution and tensile properties for 7075 Al alloy prepared by an ECAP-based SIMA process, Acta Metall. Sin., 31(2018), No. 4, p. 337.

    Article  CAS  Google Scholar 

  24. R. Meshkabadi, G. Faraji, A. Javdani, and V. Pouyafar, Combined effects of ECAP and subsequent heating parameters on semi-solid microstructure of 7075 aluminum alloy, Trans. Non-ferrous Met. Soc. China, 26(2016), No. 12, p. 3091.

    Article  CAS  Google Scholar 

  25. A. Bolouri, M. Shahmiri, and C.G. Kang, Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA 7075 aluminum alloy via SIMA process, J. Alloys Compd., 509(2011), No. 2, p. 402.

    Article  CAS  Google Scholar 

  26. L. Zhang, Y.B. Liu, Z.Y. Cao, Y.F. Zhang, and Q.Q. Zhang, Effects of isothermal process parameters on the microstructure of semisolid AZ91D alloy produced by SIMA, J. Mater. Process. Technol., 209(2009), No. 2, p. 792.

    Article  CAS  Google Scholar 

  27. H.L. Zhang, X. Li, S.Q. Xiang, C.R. Zhou, and Y.H. Cai, Alloying principle and its application in production of 6××× series wrought aluminum alloy (in Chinese), Light Alloy Fabr. Technol., 40(2012), No. 3, p. 12.

    Google Scholar 

  28. J.F. Jiang, Y. Wang, J.J. Qu, Z.M. Du, Y. Sun, and S.J. Luo, Microstructure evolution of AM60 magnesium alloy semisolid slurry prepared by new SIMA, J. Alloys Compd., 497(2010), No. 1–2, p. 62.

    Article  CAS  Google Scholar 

  29. Y.F. Wang, S.D. Zhao, X.Z. Zhao, and Y.Q. Zhao, Microstructural coarsening of 6061 aluminum alloy semi-solid billets prepared via recrystallization and partial melting, J. Mech. Sci. Technol., 31(2017), No. 8, p. 3917.

    Article  Google Scholar 

  30. J. Grum and J.M. Slabe, The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni–Co–Mo surfaced layers, J. Mater. Process. Technol., 155–156(2004), p. 2026.

    Article  Google Scholar 

  31. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, and L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76(2008), No. 5, p. 965.

    Article  CAS  Google Scholar 

  32. D. Baş and İ.H. Boyacı, Modeling and optimization I: Usability of response surface methodology, J. Food Eng., 78(2007), No. 3, p. 836.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (Nos. 2017YFB0701803 and 2016YFB0701403) and the State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-kun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Zj., Wang, Kk. & Yang, Y. Optimization of ECAP—RAP process for preparing semisolid billet of 6061 aluminum alloy. Int J Miner Metall Mater 27, 792–800 (2020). https://doi.org/10.1007/s12613-019-1895-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1895-5

Keywords

Navigation