Skip to main content
Log in

Acute salt stress promotes altered assembly dynamics of nascent freshwater microbial biofilms

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater ecosystems are under increasing threat of salinization due to human activity. Given the contributions of microbial communities to stream ecosystems, it is critical to understand how these communities are affected by the increasing presence of salt in the environment. We used an artificial stream system to investigate how salt concentrations representing the 95th- and 99th-percentile of concentrations observed in NE Ohio streams affect bacterial community succession and what implications this has on community-level functional capabilities. We hypothesized that the successional trajectory of community functionality (in the form of extracellular enzyme activity) and structure (via denitrification gene abundances and community 16S rRNA gene profiles) would be altered in response to increasing salt concentrations. We observed considerable structural changes in bacterial composition among treatments that corresponded with niche expansion by more salt-tolerant taxa. Increases in denitrification gene abundances and modifications to extracellular enzyme activity were also observed. These data suggest that continued salt pollution can dramatically affect community structure and has the potential to modify the functional contributions of the bacterial community to the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aanderud, Z. T., J. C. Vert, J. T. Lennon, T. W. Magnusson, D. P. Breakwell & A. R. Harker, 2016. Bacterial dormancy is more prevalent in freshwater than hypersaline lakes. Frontiers in Microbiology 7: 853.

    PubMed  PubMed Central  Google Scholar 

  • Allison, S. D. & P. M. Vitousek, 2005. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry 37: 937–944.

    CAS  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    PubMed  Google Scholar 

  • Araya, R., K. Tani, T. Takagi, N. Yamaguchi & M. Nasu, 2006. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiology and Ecology 43: 111–119.

    Google Scholar 

  • Arnon, S., K. A. Gray & A. I. Packman, 2007. Biophysicochemical process coupling controls nitrogen use by benthic biofilms. Limnology and Oceanography 52: 1665–1671.

    CAS  Google Scholar 

  • Artigas, J., A. M. Romaní & S. Sabater, 2015. Nutrient and enzymatic adaptations of stream biofilms to changes in nitrogen and phosphorus supply. Aquatic Microbial Ecology 75: 91–102.

    Google Scholar 

  • Baldwin, D. S., G. N. Rees, A. M. Mitchell, G. Watson & J. Williams, 2006. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 26: 455–464.

    Google Scholar 

  • Bazire, A., F. Diab, M. Jebbar & D. Haras, 2007. Influence of high salinity on biofilm formation and benzoate assimilation by Pseudomonas aeruginosa. Journal of Industrial Microbiology and Biotechnology 34: 5–8.

    CAS  PubMed  Google Scholar 

  • Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57: 289–300.

    Google Scholar 

  • Besemer, K., G. Singer, R. Limberger, A.-K. Chlup, G. Hochedlinger, I. Hödl, et al., 2007. Biophysical controls on community succession in stream biofilms. Applied and Environmental Microbiology 73: 4966–4974.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betlach, M. R., 1983. Evolution of bacterial denitrification and denitrifier diversity. Antonie Van Leeuwenhoek 48: 585–607.

    Google Scholar 

  • Bouvier, T. C. & P. A. del Giorgio, 2002. Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnology and Oceanography 47: 453–470.

    CAS  Google Scholar 

  • Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson & S. P. Holmes, 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods. https://doi.org/10.1038/nmeth.3869.

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell, B. J. & D. L. Kirchman, 2012. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. International Society of Microbial Ecology Journal 7: 210.

    Google Scholar 

  • Cañedo-Argüelles, M., B. J. Kefford, C. Piscart, N. Prat, R. B. Schäfer & C.-J. Schulz, 2012. Salinisation of rivers: an urgent ecological issue. Environmental Pollution 173: 157–167.

    PubMed  Google Scholar 

  • Cañedo-Argüelles, M., C. P. Hawkins, B. J. Kefford, R. B. Schäfer, B. J. Dyack, S. Brucet, et al., 2016. Saving freshwater from salts. Science 351: 914–916.

    PubMed  Google Scholar 

  • Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, et al., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature 7: 335–336.

    CAS  Google Scholar 

  • Chen, J., J. Seven, T. Zilla, M. A. Dippold, E. Blagodatskaya & Y. Kuzyakov, 2019. Micfrobial C:N:P stoichiometry and turnover depend on nutrients availability in soil: a 14C, 15N, and 33P triple labelling study. Soil Biology and Biochemistry 131: 206–216.

    CAS  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Austral Journal of Ecology 18: 117–143.

    Google Scholar 

  • Corsi, S. R., L. A. De Cicco, M. A. Lutz & R. M. Hirsch, 2015. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons. Science of the Total Environment 508: 488–497.

    CAS  PubMed  Google Scholar 

  • CWT, 2004. Conductivity/salinity measurement principles and methods, DQM IP-3.1.3. In The Clean Water Team Guidance Compendium for Watershed Monitoring and Assessment, Version 2.0. Division of Water Quality, California State Water Resources Control Board (SWRCB), Sacramento, CA.

  • DeForest, J. L., 2009. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biology and Biochemistry 41: 1180–1186.

    CAS  Google Scholar 

  • Duan, S. & S. S. Kaushal, 2015. Salinization alters fluxes of bioreactive elements from stream ecosystems across land use. Biogeosciences 12: 7331.

    CAS  Google Scholar 

  • Dupont, C. L., J. Larsson, S. Yooseph, K. Ininbergs, J. Goll, J. Asplund-Samuelsson, et al., 2014. Functional tradeoffs underpin salinity-driven divergence in microbial community composition. Public Library of Science One 9: 1–9.

    Google Scholar 

  • Egamberdieva, D., G. Renella, S. Wirth & R. Islam, 2010. Secondary salinity effects on soil microbial biomass. Biology and Fertility of Soils 46: 445–449.

    CAS  Google Scholar 

  • Evans, D. M., A. M. Villamagna, M. B. Green & J. L. Campbell, 2018. Origins of stream salinization in an upland New England watershed. Environmental Monitoring and Assessment 190: 523.

    CAS  PubMed  Google Scholar 

  • Faith, D. P. & D. L. Hawksworth, 1994. Phylogenetic pattern and the quantification of organismal biodiversity. Philosophical Transactions of the Royal Society of London B. https://doi.org/10.1098/rstb.1994.0085.

    Article  Google Scholar 

  • Forsyth, M. P., D. B. Shindler, M. B. Gochnauer & D. J. Kushner, 1971. Salt tolerance of intertidal marine bacteria. Canadian Journal of Microbiology 17: 825–828.

    CAS  PubMed  Google Scholar 

  • Fortunato, C. S., L. Herfort, P. Zuber, A. M. Baptista & B. C. Crump, 2011. Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. International Society of Microbial Ecology Journal 6: 554.

    Google Scholar 

  • Frankenberger, W. T. & F. T. Bingham, 1982. Influence of salinity on soil enzyme activities. Soil Science Society of America Journal 46: 1173–1177.

    CAS  Google Scholar 

  • Frankenberger, W. T. & W. A. Dick, 1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal 47: 945–951.

    CAS  Google Scholar 

  • Franklin, R. B., E. M. Morrissey & J. C. Morina, 2017. Changes in abundance and community structure of nitrate-reducing bacteria along a salinity gradient in tidal wetlands. Pedobiologia (Jena). 60: 21–26.

    Google Scholar 

  • Fukami, T. & D. A. Wardle, 2005. Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proceedings of the Royal Society B: Biological Science 272: 2105–2115.

    Google Scholar 

  • Hallin, S., A. Welsh, J. Stenström, S. Hallet, K. Enwall, D. Bru & L. Philippot, 2012. Soil functional operating range linked to microbial biodiversity and community composition using denitrifiers as model guild. Public Library of Science One 7: e51962.

    CAS  PubMed  Google Scholar 

  • Hart, B. T., P. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, et al., 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105–144.

    Google Scholar 

  • Hill, B. H., C. M. Elonen, L. R. Seifert, A. A. May & E. Tarquinio, 2012. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers. Ecological Indicators 18: 540–551.

    CAS  Google Scholar 

  • Hintz, W. D. & R. A. Relyea, 2017. Impacts of road deicing salts on the early-life growth and development of a stream salmonid: salt type matters. Environmental Pollution 223: 409–415.

    CAS  PubMed  Google Scholar 

  • Hoch, M. P. & D. L. Kirchman, 2018. Ammonium uptake by heterotrophic bacteria in the Delaware estuary and adjacent coastal waters. Limnology and Oceanography 40: 886–897.

    Google Scholar 

  • Hothorn, T., F. Bretz & P. Westfall, 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.

    PubMed  Google Scholar 

  • Irshad, M., T. Honna, S. Yamamoto, A. E. Eneji & N. Yamasaki, 2005. Nitrogen mineralization under saline conditions. Communications in Soil Science and Plant Analysis 36: 1681–1689.

    CAS  Google Scholar 

  • Jackson, C. R., 2003. Changes in community properties during microbial succession. Oikos 101: 444–448.

    Google Scholar 

  • Katebian, L. & S. C. Jiang, 2013. Marine bacterial biofilm formation and its responses to periodic hyperosmotic stress on a flat sheet membrane for seawater desalination pretreatment. Journal of Membrane Science 425–426: 182–189.

    Google Scholar 

  • Katoh, K., K. Misawa, K. Kuma & T. Miyata, 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushal, S. S., P. M. Groffman, G. E. Likens, K. T. Belt, W. P. Stack, V. R. Kelly, et al., 2005. Increased salinization of fresh water in the northeastern United States. Proceedings of the National Academy of Science 102: 13517–13520.

    CAS  Google Scholar 

  • Kaushal, S. S., G. E. Likens, M. L. Pace, R. M. Utz, S. Haq, J. Gorman & M. Grese, 2018. Freshwater salinization syndrome on a continental scale. Proceedings of the National Academy of Science 115: E574–E583.

    CAS  Google Scholar 

  • Ketola, T. & T. Hiltunen, 2014. Rapid evolutionary adaptation to elevated salt concentrations in pathogenic freshwater bacteria Serratia marcescens. Ecology and Evolution 4: 3901–3908.

    PubMed  PubMed Central  Google Scholar 

  • Kim, L. H. & T. H. Chong, 2017. Physiological responses of salinity-stressed Vibrio sp. and the effect on the biofilm formation on a nanofiltration membrane. Environ Science and Technology 51: 1249–1258.

    CAS  Google Scholar 

  • Kim, S. & C. Koretsky, 2013. Effects of road salt deicers on sediment biogeochemistry. Biogeochemistry 112: 343–358.

    CAS  Google Scholar 

  • Kirchman, D. L., 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microbial Ecology 28: 255–271.

    CAS  PubMed  Google Scholar 

  • Kloos, K., A. Mergel, C. Rösch & H. Bothe, 2001. Denitrification within the genus Azospirillum and other associative bacteria. Functional Plant Biology 28: 991–998.

    Google Scholar 

  • Koch, A. L., 1985. The macroeconomics of microbial growth. In Fletcher, M. & G. D. Floodgate (eds.), Bacteria in their Natural Environments. Academic Press, London: 1–42.

    Google Scholar 

  • Kunin, V., J. Raes, J. K. Harris, J. R. Spear, J. J. Walker, N. Ivanova, C. von Mering, B. M. Bebout, N. R. Pace, P. Bork & P. Hugenholtz, 2008. Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Molecular Systems Biology. https://doi.org/10.1038/msb.2008.35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawrence, J. R., G.v D. W. Swerhone, U. Kuhlicke & T. R. Neu, 2007. In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. Canadian Journal of Microbiology 53: 450–458.

    CAS  PubMed  Google Scholar 

  • Lax, S. & E. W. Peterson, 2009. Characterization of chloride transport in the unsaturated zone near salted road. Environmental Geology 58: 1041–1049.

    CAS  Google Scholar 

  • Lear, G., A. Dopheide, P.-Y. Ancion, K. Roberts, V. Washington, J. Smith & G. D. Lewis, 2012. Biofilms in freshwater: their importance for the maintenance and monitoring of freshwater health. Current Research Applications, Microbial Biofilms: 129–151.

    Google Scholar 

  • Lenth, R. V., 2016. Least-squares means: the R Package {lsmeans}. Journal of Statistical Software 69: 1–33.

    Google Scholar 

  • Löfgren, S., 2001. The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water Air and Soil Pollution 130: 863–868.

    Google Scholar 

  • Logares, R., J. Bråte, S. Bertilsson, J. L. Clasen, K. Shalchian-Tabrizi & K. Rengefors, 2009. Infrequent marine–freshwater transitions in the microbial world. Trends in Microbiology 17: 414–422.

    CAS  PubMed  Google Scholar 

  • Lozupone, C. A. & R. Knight, 2007. Global patterns in bacterial diversity. Proceedings of the National Academies of Science 104: 11436–11440.

    CAS  Google Scholar 

  • Luo, L., H. Meng & J.-D. Gu, 2017. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. Journal of Environmental Management 197: 539–549.

    CAS  PubMed  Google Scholar 

  • Lycus, P., M. J. Soriano-Laguna, M. Kjos, D. J. Richardson, A. J. Gates, D. A. Milligan, et al., 2018. A bet-hedging strategy for denitrifying bacteria curtails their release of N2O. Proceedings of the National Academies of Science 115: 11820–11825.

    CAS  Google Scholar 

  • Manz, W., K. Wendt-Potthoff, T. R. Neu, U. Szewzyk & J. R. Lawrence, 1999. Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microbial Ecology 37: 225–237.

    CAS  PubMed  Google Scholar 

  • Miyahara, M., S.-W. Kim, S. Zhou, S. Fushinobu, T. Yamada, W. Ikeda-Ohtsubo, et al., 2012. Survival of the aerobic denitrifier Pseudomonas stutzeri strain TR2 during co-culture with activated sludge under denitrifying conditions. Bioscience, Biotechnology, and Biochemistry 76: 495–500.

    CAS  PubMed  Google Scholar 

  • Moorhead, D. L., R. L. Sinsabaugh, B. H. Hill & M. N. Weintraub, 2016. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology and Biochemistry 93: 1–7.

    CAS  Google Scholar 

  • Morrissey, E. M. & R. B. Franklin, 2015. Evolutionary history influences the salinity preference of bacterial taxa in wetland soils. Frontiers in Microbiology 6: 1013.

    PubMed  PubMed Central  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al., 2016. vegan: community ecology package.

  • Omernik, J. M., 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77: 118–125.

    Google Scholar 

  • Oren, A., 1999. Bioenergetic aspects of halophilism. Microbiology and Molecular Biology Reviews 63: 334–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osaka, T., K. Shirotani, S. Yoshie & S. Tsuneda, 2008. Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process. Water Research 42: 3709–3718.

    CAS  PubMed  Google Scholar 

  • Pan, C., C. Liu, H. Zhao & Y. Wang, 2013. Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization. European Journal of Soil Biology 55: 13–19.

    CAS  Google Scholar 

  • Peck, M., 2012. Middle Cuyahoga River watershed action plan. http://water.ohiodnr.gov/portals/soilwater/downloads/wap/CuyahogaMiddle.pdf. Accessed 19 May 2019

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team, 2017. {nlme}: Linear and nonlinear mixed effects models.

  • Price, M. N., P. S. Dehal & A. P. Arkin, 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution 26: 1641–1650.

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team, 2016. R: A language and environment for statistical computing.

  • Rath, K. M., A. Maheshwari, P. Bengtson & J. Rousk, 2016. Comparative toxicities of salts on microbial processes in soil. Applied and Environmental Microbiology 82: 2012–2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reed, H. & J. Martiny, 2013. Microbial composition affects the functioning of estuarine sediments. Journal of the International Society for Microbial Ecology 7: 868–879.

    CAS  Google Scholar 

  • Ren, Y., C. Wang, Z. Chen, E. Allan, H. C. van der Mei & H. J. Busscher, 2018. Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing. FEMS Microbiology Reviews 42: 259–272.

    CAS  PubMed  Google Scholar 

  • Rietz, D. N. & R. J. Haynes, 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry 35: 845–854.

    CAS  Google Scholar 

  • Ringuet, S., L. Sassano & Z. I. Johnson, 2011. A suite of microplate reader-based colorimetric methods to quantify ammonium, nitrate, orthophosphate and silicate concentrations for aquatic nutrient monitoring. Journal of Environmental Monitoring 13: 370–376.

    CAS  PubMed  Google Scholar 

  • Robertson, L. A. & J. G. Kuenen, 1984. Aerobic denitrification—old wine in new bottles? Antonie Van Leeuwenhoek 50: 525–544.

    CAS  PubMed  Google Scholar 

  • Rocca, J. D., M. Simonin, E. S. Bernhardt, A. D. Washburne & J. P. Wright, 2020. Rare microbial taxa emerge when communities collide: freshwater and marine microbiome responses to experimental mixing. Ecology 101: e02956.

    PubMed  Google Scholar 

  • Rose, C. & R. P. Axler, 1998. Use of alkaline phosphatase activity in evaluating phytoplankton community phosphorus deficiency. Hydrobiologia 361: 145–156.

    Google Scholar 

  • Rousk, J., F. K. Elyaagubi, D. L. Jones & D. L. Godbold, 2011. Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient. Soil Biology and Biochemistry 43: 1881–1887.

    CAS  Google Scholar 

  • Roy, J. W., R. McInnis, G. Bickerton & P. L. Gillis, 2015. Assessing potential toxicity of chloride-affected groundwater discharging to an urban stream using juvenile freshwater mussels (Lampsilis siliquoidea). Science of the Total Environment 532: 309–315.

    CAS  PubMed  Google Scholar 

  • Sabater, S., H. Guasch, A. Romaní & I. Muñoz, 2002. The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia 469: 149–156.

    CAS  Google Scholar 

  • Salles, J. F., X. Le Roux & F. Poly, 2012. Relating phylogenetic and functional diversity among denitrifiers and quantifying their capacity to predict community functioning. Frontiers in Microbiology 3: 209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samuels, C. L. & J. A. Drake, 1997. Divergent perspectives on community convergence. Trends in Ecology and Evolution 12: 427–432.

    CAS  PubMed  Google Scholar 

  • Schuler, M. S., W. D. Hintz, D. K. Jones, L. A. Lind, B. M. Mattes, A. B. Stoler, et al., 2017. How common road salts and organic additives alter freshwater food webs: in search of safer alternatives. Journal of Applied Ecology 54: 1353–1361.

    CAS  Google Scholar 

  • Setzinger, S. P., W. S. Gardner & A. K. Spratt, 1991. The effect of salinity on ammonium sorption in aquatic sediments: implications for benthic nutrient recycling. Estuaries 14: 167–174.

    Google Scholar 

  • Sévin, D. C., J. N. Stählin, G. R. Pollak, A. Kuehne & U. Sauer, 2016. Global metabolic responses to salt stress in fifteen species. Public Library of Science One 11: e0148888–e0148888.

    PubMed  Google Scholar 

  • Servais, S., J. S. Kominoski, S. P. Charles, E. E. Gaiser, V. Mazzei, T. G. Troxler & B. J. Wilson, 2019. Saltwater intrusion and soil carbon loss: testing effects of salinity and phosphorus loading on microbial functions in experimental freshwater wetlands. Geoderma 337: 1291–1300.

    CAS  Google Scholar 

  • Singer, G., K. Besemer, I. Hödl, A. K. Chlup, G. Hochedlinger, P. Stadler & T. J. Battin, 2006. Microcosm design and evaluation to study stream microbial biofilms. Limnology and Oceanography: Methods 4: 436–447.

    Google Scholar 

  • Sleator, R. D. & C. Hill, 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26: 49–71.

    CAS  PubMed  Google Scholar 

  • Smucker, N. J., J. L. DeForest & M. L. Vis, 2009. Different methods and storage duration affect measurements of epilithic extracellular enzyme activities in lotic biofilms. Hydrobiologia 636: 153–162.

    CAS  Google Scholar 

  • Stoodley, P., K. Sauer, D. G. Davies & J. W. Costerton, 2002. Biofilms as complex differentiated communities. Annual Review of Microbiology 56: 187–209.

    CAS  PubMed  Google Scholar 

  • Strahler, A. N., 1964. Quantitative geomorphology of drainage basins and channel networks. In Chow, V. T. (ed.), Handbook of applied hydrology. McGraw-Hill, New York: 439–476.

    Google Scholar 

  • Sundareshwar, P. V. & J. T. Morris, 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuary salinity gradient. Limnology and Oceanography 44: 1693–1701.

    CAS  Google Scholar 

  • Telesh, I. V. & V. V. Khlebovich, 2010. Principal processes within the estuarine salinity gradient: a review. Marine Pollution Bulletin 61: 149–155.

    CAS  PubMed  Google Scholar 

  • Throbäck, I. N., K. Enwall, Å. Jarvis & S. Hallin, 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology 49: 401–417.

    PubMed  Google Scholar 

  • Tolker-Nielsen, T. & S. Molin, 2000. Spatial organization of microbial biofilm communities. Microbial Ecology 40: 75–84.

    CAS  PubMed  Google Scholar 

  • Tripathi, B. M., J. C. Stegen, M. Kim, K. Dong, J. M. Adams & Y. K. Lee, 2018. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. Journal of the International Society of Microbial Ecology. https://doi.org/10.1038/s41396-018-0082-4.

    Article  Google Scholar 

  • Turner, S., K. M. Pryer, V. P. W. Miao & J. D. Palmer, 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology 46: 327–338.

    CAS  PubMed  Google Scholar 

  • Vitousek, P. M., S. Porder, B. Z. Houlton & O. A. Chadwick, 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20: 5–15.

    PubMed  Google Scholar 

  • Wang, H., J. A. Gilbert, Y. Zhu & X. Yang, 2018. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Science of the Total Environment 631–632: 1342–1349.

    PubMed  Google Scholar 

  • Weston, N. B., R. E. Dixon & S. B. Joye, 2006. Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization. Journal of Geophysical Research Biogeosciences. https://doi.org/10.1029/2005JG000071.

    Article  Google Scholar 

  • Williams, W. D., 2001. Anthropogenic salinisation of inland waters. Hydrobiologia 466: 329–337.

    Google Scholar 

  • Yan, N., P. Marschner, W. Cao, C. Zuo & W. Qin, 2015. Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research 3: 316–323.

    Google Scholar 

  • Zhang, H., 2004. The optimality of naive Bayes. In Proceedings of the 17th International Florida Artificial Intelligence Research Society Conference, AAAI Press, pp 562–567

  • Zhang, L., G. Gao, X. Tang & K. Shao, 2014. Can the freshwater bacterial communities shift to the “marine-like” taxa? Journal of Basic Microbiology 54: 1264–1272.

    CAS  PubMed  Google Scholar 

  • Zwart, G., B. C. Crump, M. P. K. Agterveld & F. Hagen, 2002. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology 28: 141–155.

    Google Scholar 

Download references

Acknowledgements

This research has been supported by The Art and Margaret Herrick Aquatic Ecology Research Award, several Kent State University Graduate Student Senate Research Awards and a U.S. Environmental Protection Agency’s Science to Achieve Results (STAR) program. This publication was developed under Assistance Agreement No. FP-91781301-0 awarded by the U.S. Environmental Protection Agency to Jonathon B. Van Gray. It has not been formally reviewed by EPA. The views expressed in this document are solely those of J.B. Van Gray, A.A. Roberto, and L.G. Leff and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication. The authors have no conflict of interests to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathon B. Van Gray.

Additional information

Handling editor: Stefano Amalfitano

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 831 kb)

Supplementary material 2 (EPS 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Gray, J.B., Roberto, A.A. & Leff, L.G. Acute salt stress promotes altered assembly dynamics of nascent freshwater microbial biofilms. Hydrobiologia 847, 2465–2484 (2020). https://doi.org/10.1007/s10750-020-04266-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04266-2

Keywords

Navigation