Skip to main content
Log in

A study of peroxyacetyl nitrate at a rural site in Beijing based on continuous observations from 2015 to 2019 and the WRF-Chem model

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Peroxyacetyl nitrate (PAN) is one of the most important photochemical pollutants and has aroused much concern in China in recent decades. However, few studies described the long-term variations in PAN in China. In this study, we continuously monitored the PAN, O3 and NOx concentrations at a regional background site near Beijing from August 2015 to February 2019. Based on the observed concentrations and climate data, we analyzed the seasonal PAN variations. The results revealed that the monthly mean PAN concentration ranged from 0.33–2.41 ppb, with an average value of 0.94 ppb. The PAN concentration exhibited a distinct seasonal variation, with high values in spring and low values in winter. After analyzing the corresponding meteorological data, we found that stronger ultraviolet (UV) radiation, a relatively longer lifetime and a higher background PAN concentration contributed to the high PAN concentrations in spring. In addition, with the utilization of the WRF-Chem (Weather Research and Forecasting with Chemistry) model, the cause of the extremely high PAN concentration in spring 2018 was determined. The model results demonstrated that an anomalously low pressure and the southwesterly winds in northern China might be the main causes of the increased PAN concentration in Beijing and its surrounding area in spring 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beine H, Krognes T (2000). The seasonal cycle of peroxyacetyl nitrate (PAN) in the European Arctic. Atmospheric Environment, 34(6): 933–940

    Article  CAS  Google Scholar 

  • Beine H J, Jaffe D A, Blake D R, Atlas E, Harris J (1996). Measurements of PAN, alkyl nitrates, ozone and hydrocarbons during spring in interior Alaska. Journal of Geophysical Research, 101(D7): 12613–12619

    Article  CAS  Google Scholar 

  • Brice K A, Penkett S A, Atkins D H F, Sandalls F J, Bamber D J, Tuck A F, Vaughan G (1984). Atmospheric measurements of peroxyacetyl nitrate (PAN) in rural, south-east England: Seasonal variations winter photochemistry and long-range transport. Atmospheric Environment, 18(12): 2691–2702

    Article  CAS  Google Scholar 

  • Bukowiecki N, Dommen J, Prevot A S H, Richter R, Weingartner E, Baltensperger U (2002). A mobile pollutant measurement laboratory—Measuring gas phase andaerosol ambient concentrations with high spatial and temporal resolution. Atmospheric Environment, 36 (36–37): 5569–5579

    Article  CAS  Google Scholar 

  • Chen L, Zhu J, Liao H, Gao Y, Qiu Y, Zhang M, Liu Z, Li N, Wang Y (2019). Assessing the formation and evolution mechanisms of severe haze pollution in the Beijing-Tianjin-Hebei region using process analysis. Atmospheric Chemistry and Physics, 19(16): 10845–10864

    Article  CAS  Google Scholar 

  • Chou M D, Suarez M J, Ho C H, Yan M M H, Lee K T (1998). Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. Journal of Climate, 11(2): 202–214

    Article  Google Scholar 

  • Fischer E V, Jacob D J, Yantosca R M, Sulprizio M P, Millet D B, Mao J, Paulot F, Singh H B, Roiger A, Ries L, Talbot R W, Dzepina K, Pandey Deolal S (2014). Atmospheric peroxyacetyl nitrate (PAN): A global budget and source attribution. Atmospheric Chemistry and Physics, 14(5): 2679–2698

    Article  CAS  Google Scholar 

  • Fischer E V, Jaffe D A, Reidmiller D R, Jaeglé L (2010). Meteorological controls on observed peroxyacetyl nitrate at Mount Bachelor during the spring of 2008. Journal of Geophysical Research, 115(D3): D03302

    Article  CAS  Google Scholar 

  • Gaffney J S, Marley N A, Prestbo E W (1993). Measurements of peroxyacetyl nitrate at a remote site in the southwestern United States: Tropospheric implications. Environmental Science & Technology, 27(9): 1905–1910

    Article  CAS  Google Scholar 

  • Gao J, Zhu B, Xiao H, Kang H, Pan C, Wang D, Wang H (2018). Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China. Atmospheric Chemistry and Physics, 18(10): 7081–7094

    Article  CAS  Google Scholar 

  • Gao T, Han L, Wang B, Yang G, Xu Z, Zeng L, Zhang J (2014). Peroxyacetyl nitrate observed in Beijing in August from 2005 to 2009. Journal of Environmental Sciences (China), 26(10): 2007–2017

    Article  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer P I, Geron C (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6(11): 3181–3210

    Article  CAS  Google Scholar 

  • Heuss J M, Glasson W A (1968). Hydrocarbon reactivity and eye irritation. Environmental Science & Technology, 2(12): 1109–1116

    Article  CAS  Google Scholar 

  • Hong S Y, Jade Lim J O (2006). The WRF single-Moment 6-class microphysics Scheme. Journal of the Korean Meteorological Society, 42: 129–151

    Google Scholar 

  • Hong S Y, Noh Y, Dudhia J (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9): 2318–2341

    Article  Google Scholar 

  • Jiang F, Zhou P, Liu Q, Wang T, Zhuang B, Wang X (2012). Modeling tropospheric ozone formation over East China in springtime. Journal of Atmospheric Chemistry, 69(4): 303–319

    Article  CAS  Google Scholar 

  • Lee J B, Yoon J S, Jung K, Eom S W, Chae Y Z, Cho S J, Kim S D, Sohn J R, Kim K H (2013). Peroxyacetyl nitrate (PAN) in the urban atmosphere. Chemosphere, 93(9): 1796–1803

    Article  CAS  Google Scholar 

  • Li K, Jacob D J, Liao H, Shen L, Zhang Q, Bates K H (2019). Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United States of America, 116(2): 422–427

    Article  CAS  Google Scholar 

  • Li L, Wu F K, Meng X Y (2013). Seasonal and diurnal variation of isoprene in the atmosphere of Beijing. Environmental Monitoring in China, 29(2): 120–124

    CAS  Google Scholar 

  • Li M, Zhang Q, Kurokawa J I, Woo J H, He K, Lu Z, Ohara T, Song Y, Streets D G, Carmichael G R, Cheng Y, Hong C, Huo H, Jiang X, Kang S, Liu F, Su H, Zheng B (2017). MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17(2): 935–963

    Article  CAS  Google Scholar 

  • Liu L, Wang X, Chen J, Xue L, Wang W, Wen L, Li D, Chen T (2018). Understanding unusually high levels of peroxyacetyl nitrate (PAN) in winter of urban Jinan, China. Journal of Environmental Sciences (China), 71(9): 249–263

    Article  Google Scholar 

  • Liu Z, Wang Y, Gu D, Zhao C, Huey L G, Stickel R, Liao J, Shao M, Zhu T, Zeng L, Liu S C, Chang C C, Amoroso A, Costabile F (2010). Evidence of reactive aromatics as a major source of peroxyacetyl nitrate over China. Environmental Science & Technology, 44(18): 7017–7022

    Article  CAS  Google Scholar 

  • Ma Z, Xu J, Quan W, Zhang Z, Lin W, Xu X (2016). Significant increase of surface ozone at a rural site, north of eastern China. Atmospheric Chemistry and Physics, 16(6): 3969–3977

    Article  CAS  Google Scholar 

  • McFadyen G G, Cape J N (2005). Peroxyacetyl nitrate in eastern Scotland. Science of the Total Environment, 337(1–3): 213–222

    Article  CAS  Google Scholar 

  • Mlawer E J, Taubman S J, Brown P D, Iacono M J, Clough S A (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, D, Atmospheres, 102(D14): 16663–16682

    Article  CAS  Google Scholar 

  • Monson R K, Jaeger C H, Adams W W III, Driggers E M, Silver G M, Fall R (1992). Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiology, 98(3): 1175–1180

    Article  CAS  Google Scholar 

  • Moxim W J, Levy H II, Kasibhatla P S (1996). Simulated global tropospheric PAN: Its transport and impact on NOx. Journal of Geophysical Research, 101(D7): 12621–12638

    Article  CAS  Google Scholar 

  • Penkett S A, Brice K A (1986). The spring maximum in photo-oxidants in the Northern Hemisphere troposphere. Nature, 319(6055): 655–657

    Article  CAS  Google Scholar 

  • Pandey Deolal S, Henne S, Ries L, Gilge S, Weers U, Steinbacher M, Staehelin J, Peter T (2014). Analysis of elevated springtime levels of Peroxyacetyl nitrate (PAN) at the high Alpine research sites Jungfraujoch and Zugspitze. Atmospheric Chemistry and Physics, 14(22): 12553–12571

    Article  CAS  Google Scholar 

  • Qiu Y, Lin W, Li K, Chen L, Yao Q, Tang Y, Ma Z (2019b). Vertical characteristics of peroxyacetyl nitrate (PAN) from a 250-m tower in northern China during September 2018. Atmospheric Environment, 213: 55–63

    Article  CAS  Google Scholar 

  • Qiu Y, Ma Z, Li K (2019a). A modeling study of the peroxyacetyl nitrate (PAN) during a wintertime haze event in Beijing, China. Science of the Total Environment, 650: 1944–1953

    Article  CAS  Google Scholar 

  • Rappenglück B, Kourtidis K, Fabian P (1993). Measurements of ozone and peroxyacetyl nitrate (PAN) in Munich. Atmospheric Environment, 27(3): 293–305

    Article  Google Scholar 

  • Schmitt R, Volz-Thomas A (1997). Climatology of ozone, PAN, CO, and NMHC in the free troposphere over the southern North Atlantic. Journal of Atmospheric Chemistry, 28(1/3): 245–262

    Article  CAS  Google Scholar 

  • Seinfeld J H, Pandis S N (2006). Atmospheric chemistry and physics: From air pollution to climate change. 2nd, ed. Hoboken: John Wiley & Sons, Inc., 231–233

    Google Scholar 

  • Singh H B, Hanst P L (1981). Peroxyacetyl nitrate (PAN) in the unpolluted atmosphere: An important reservoir for nitrogen oxides. Geophysical Research Letters, 8(8): 941–944

    Article  CAS  Google Scholar 

  • Singh H B, Salas L J (1989). Measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) at selected urban, rural and remote sites. Atmospheric Environment, 23(1): 231–238

    Article  CAS  Google Scholar 

  • Singh H B, Salas L J, Ridley B A, Shetter J D, Donahue N M, Fehsenfeld F C, Fahey D W, Parrish D D, Williams E J, Liu S C, Hubler G, Murphy P C (1985). Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere. Nature, 318(6044): 347–349

    Article  CAS  Google Scholar 

  • Singh H B, Salas L J, Viezee W (1986). Global distribution of peroxyacetyl nitrate. Nature, 321(6070): 588–591

    Article  CAS  Google Scholar 

  • Sun E J, Huang M H (1995). Detection of peroxyacetyl nitrate at phytotoxic level and its effects on vegetation in Taiwan. Atmospheric Environment, 29(21): 2899–2904

    Article  CAS  Google Scholar 

  • Talukdar R K, Burkholder J B, Schmoltner A M, Roberts J M, Wilson R R, Ravishankara A R (1995). Investigation of the loss processes for peroxyacetyl nitrate in the atmosphere: UV photolysis and reaction with OH. Journal of Geophysical Research, D, Atmospheres, 100 (D7): 14163–14173

    Article  Google Scholar 

  • Tanner R L, Miguel A H, de Andrade J B, Gaffney J S, Streit G E (1988). Atmospheric chemistry of aldehydes: enhanced peroxyacetyl nitrate formation from ethanol-fueled vehicular emissions. Environmental Science & Technology, 22(9): 1026–1034

    Article  CAS  Google Scholar 

  • Taylor O C (1969). Importance of peroxyacetyl nitrate (PAN) as a phytotoxic air pollutant. Journal of the Air Pollution Control Association, 19(5): 347–351

    Article  CAS  Google Scholar 

  • Temple P J, Taylor O C (1983). World-wide ambient measurements of peroxyacetyl nitrate (PAN) and implications for plant injury. Atmospheric Environment, 17(8): 1583–1587

    Article  CAS  Google Scholar 

  • Wang B, Shao M, Roberts J M, Yang G, Yang F, Hu M, Zeng L, Zhang Y, Zhang J (2010). Ground-based on-line measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in the Pearl River Delta, China. International Journal of Environmental Analytical Chemistry, 90(7): 548–559

    Article  CAS  Google Scholar 

  • Wang Y S, Yao L, Wang L L, Liu Z R, Ji D S, Tang G Q, Zhang J K, Sun Y, Hu B, Xin J Y (2014). Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Science China. Earth Sciences, 57(1): 14–25

    Article  CAS  Google Scholar 

  • Xue L, Wang T, Wang X, Blake D R, Gao J, Nie W, Gao R, Gao X, Xu Z, Ding A, Huang Y, Lee S, Chen Y, Wang S, Chai F, Zhang Q, Wang W (2014). On the use of an explicit chemical mechanism to dissect peroxyacetyl nitrate formation. Environmental Pollution, 195: 39–47

    Article  CAS  Google Scholar 

  • Yin Z, Wang H, Ma X (2019). Possible relationship between the Chukchi sea ice in the early winter and the February haze pollution in the North China Plain. Journal of Climate, 32(16): 5179–5190

    Article  Google Scholar 

  • Zaveri R A, Easter R C, Fast J D, Peters L K (2008). Model for simulating aerosol interactions and chemistry (MOSAIC). Journal of Geophysical Research-Atmosphere, 113:D13204

    Article  CAS  Google Scholar 

  • Zaveri R A, and Peters L K (1999). A new lumped structure photochemical mechanism for large-scale applications. Journal of Geophysical Research, 104(D23): 30387–30415

    Article  CAS  Google Scholar 

  • Zhang B, Zhao B, Zuo P, Huang Z, Zhang J (2017). Ambient peroxyacyl nitrate concentration and regional transportation in Beijing. Atmospheric Environment, 166: 543–550

    Article  CAS  Google Scholar 

  • Zhang G, Mu Y, Zhou L, Zhang C, Zhang Y, Liu J, Fang S, Yao B (2015). Summertime distributions of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in Beijing: Understanding the sources and major sink of PAN. Atmospheric Environment, 103: 289–296

    Article  CAS  Google Scholar 

  • Zhang H, Xu X, Lin W, Wang Y (2014). Wintertime peroxyacetyl nitrate (PAN) in the megacity Beijing: Role of photochemical and meteorological processes. Journal of Environmental Sciences (China), 26(1): 83–96

    Article  CAS  Google Scholar 

  • Zhang J M, Wang T, Ding A J, Zhou X H, Xue L K, Poon C N, Wu W S, Gao J, Zuo H C, Chen J M, Zhang X C, Fan S J (2009). Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote areas of western China. Atmospheric Environment, 43(2): 228–237

    Article  CAS  Google Scholar 

  • Zhu H, Gao T, Zhang J (2018). Wintertime characteristic of peroxyacetyl nitrate in the Chengyu district of southwestern China. Environmental Science and Pollution Research International, 25(23): 23143–23156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of the Shangdianzi station for their excellent work. This research is supported by the Beijing Natural Science Foundation (Grant No. 8194078), National Key R&D Program of China (Grant No. 2016YFC0201902), National Natural Science Foundation of China (Grant No. 91744206). All of the observational data and modeling results have been archived by the corresponding author, Prof. Zhiqiang Ma (zqma@ium.cn) and are available upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Ma.

Additional information

Highlights

• PAN concentrations at a rural site near Beijing were monitored from 2015 to 2019.

• PAN concentrations exhibited high values in spring and low values in winter.

• Anomalously southerlies induced extreme high PAN concentration in spring 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Ma, Z., Lin, W. et al. A study of peroxyacetyl nitrate at a rural site in Beijing based on continuous observations from 2015 to 2019 and the WRF-Chem model. Front. Environ. Sci. Eng. 14, 71 (2020). https://doi.org/10.1007/s11783-020-1250-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-020-1250-0

Keywords

Navigation