Skip to main content

Advertisement

Log in

Rapid toxicity assessment of six antifouling booster biocides using a microplate-based chlorophyll fluorescence in Undaria pinnatifida gametophytes

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Biocides of antifouling agents can cause problems in marine ecosystems by damaging to non-target algal species. Aquatic bioassays are important means of assessing the quality of water containing mixtures of contaminants and of providing a safety standard for water management in an ecological context. In this study, a rapid, sensitive and inexpensive test method was developed using free-living male and female gametophytes of the brown macroalga Undaria pinnatifida. A conventional fluorometer was employed to evaluate the acute (48 h) toxic effects of six antifouling biocides: 4,5-Dichloro-2-octyl-isothiazolone (DCOIT), diuron, irgarol, medetomidine, tolylfluanid, zinc pyrithione (ZnPT). The decreasing toxicity in male and female gametophytes as estimated by EC50 (effective concentration at which 50% inhibition occurs) values was: diuron (0.037 and 0.128 mg l−1, respectively) > irgarol (0.096 and 0.172 mg l−1, respectively) > tolylfluanid (0.238 and 1.028 mg l−1, respectively) > DCOIT (1.015 and 0.890 mg l−1, respectively) > medetomidine (12.032 and 12.763 mg l−1, respectively). For ZnPT, 50% fluorescence inhibition of U. pinnatifida gametophytes occurred at concentrations above 0.4 mg l−1. The Undaria method is rapid, simple, practical, and cost-effective for the detection of photosynthesis-inhibiting biocides, thus making a useful tool for testing the toxicity of antifouling agents in marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amara I, Miled W, Slama RB, Ladhari N (2018) Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ Toxicol Pharmacol 57:115–130

    Article  CAS  Google Scholar 

  • Anderson BS, Hunt JW (1988) Bioassay methods for evaluating the toxicity of heavy metals, biocides and sewage effluent using microscopic stages of giant kelp Macrocystis pyrifera (Agardh): a preliminary report. Mar Environ Res 26:113–134

    Article  CAS  Google Scholar 

  • Arning J, Matzke M, Stolte S, Nehen F, Bottin-Weber U, Böschen A, Abdulkarim S, Jastorff B, Ranke J (2009) Analyzing cytotoxic effects of selected isothiazol-3-one biocides using the toxic ratio concept and structure− activity relationship considerations. Chem Res Toxicol 22:1954–1961

    Article  CAS  Google Scholar 

  • ASTM (2020) Environmental assessment standards and risk management standards. https://www.astm.org/Standards/environmental-assessment-and-risk-managementstandards.html#E50.47

  • Bao VWW, Leung KMY, Qiu J-W, Lam MHW (2011) Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar Pollut Bull 62:1147–1151

    Article  CAS  Google Scholar 

  • Bidwell JR, Wheeler KW, Burridge TR (1998) Toxicant effects on the zoospore stage of the marine macroalga Ecklonia radiata (Phaeophyta: Laminariales). Mar Ecol Prog Ser 163:259–265

    Article  CAS  Google Scholar 

  • Bolton J, Lüning K (1982) Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94

    Article  Google Scholar 

  • Bos AR, Bouma TJ, de Kort GL, van Katwijk MM (2007) Ecosystem engineering by annual intertidal seagrass beds: sediment accretion and modification. Estuar Coast Shelf Sci 74:344–348

    Article  Google Scholar 

  • Braithwaite R, Fletcher R (2005) The toxicity of Irgarol 1051 and Sea-Nine 211 to the non-target macroalga Fucus serratus Linnaeus, with the aid of an image capture and analysis system. J Exp Mar Biol Ecol 322:111–121

    Article  CAS  Google Scholar 

  • Callow ME, Willingham G (1996) Degradation of antifouling biocides. Biofouling 10:239–249

    Article  CAS  Google Scholar 

  • Campbell SJ, Burridge TR (1998) Occurrence of Undaria pinnatifida (Phaeophyta: Laminariales) in Port Phillip Bay, Victoria, Australia. Mar Freshwater Res 49:379–381

    Article  Google Scholar 

  • Carney LT, Edwards MS (2006) Cryptic processes in the sea: a review of delayed development in the microscopic life stages of marine macroalgae. Algae 21:161–168

    Article  Google Scholar 

  • Chen L, Xu Y, Wang W, Qian P-Y (2015) Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions. Chemosphere 119:1075–1083

    Article  CAS  Google Scholar 

  • Curiel D, Bellemo G, Marzocchi M, Scattolin M, Parisi G (1998) Distribution of introduced Japanese macroalgae Undaria pinnatifida, Sargassum muticum (Phaeophyta) and Antithamnion pectinatum (Rhodophyta) in the Lagoon of Venice. Hydrobiologia 385:17

    Article  Google Scholar 

  • Dahllöf I (2005) Analysis, fate and toxicity of zinc-and copper pyrithione in the marine environment. Nordic Council of Ministers, Copenhagen, Denmark

  • Devilla RA, Brown MT, Donkin M, Tarran GA, Aiken J, Readman JW (2005) Impact of antifouling booster biocides on single microalgal species and on a natural marine phytoplankton community. Mar Ecol Prog Ser 286:1–12

    Article  CAS  Google Scholar 

  • Eklund B (1998) Reproductive performance and growth response of the red alga Ceramium strictum under the impact of phenol. Mar Ecol Prog Ser 167:119–126

    Article  CAS  Google Scholar 

  • Environment Canada (1990) Guidance document on control toxicity test precision using reference toxicants. Environmental Protection Series. Environment Canada, Gatineau, Canada

    Google Scholar 

  • EPA (2003) A compendium of chemical, physical and biological methods for assessing and monitoring the remediation of contaminated sediment sites. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=83657

  • Eullaffroy P, Vernet G (2003) The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phytotoxicity in algae. Water Res 37:1983–1990

    Article  CAS  Google Scholar 

  • European Chemicals Agency (2014) CLH report for medetomidine, proposal for harmonised classification and labeling, UK Competent Authority. https://echa.europa.eu/documents/10162/13626/clh_proposal_medetomidine_en.pdf

  • Fai PB, Grant A, Reid B (2007) Chlorophyll a fluorescence as a biomarker for rapid toxicity assessment. Environ Toxicol Chem 26:1520–1531

    Article  CAS  Google Scholar 

  • Feng J, Chen J, Chen M, Su X, Shi Q (2017) Effects of biocide treatments on durability of wood and bamboo/high density polyethylene composites against algal and fungal decay. J Appli Polym Sci 134:45148

    Article  CAS  Google Scholar 

  • Fletcher R, Manfredi C (1995) The occurrence of Undaria pinnatifida (Phaeophyceae, Laminariales) on the south coast of England. Bot Mar 38:355–358

    Article  Google Scholar 

  • Gatidou G, Thomaidis NS, Zhou JL (2007) Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ Int 33:70–77

    Article  CAS  Google Scholar 

  • Girling J, Thomas K, Brooks S, Smith D, Shahsavari E, Ball A (2015) A macroalgal germling bioassay to assess biocide concentrations in marine waters. Mar Pollut Bull 91:82–86

    Article  CAS  Google Scholar 

  • Guardiola FA, Cuesta A, Meseguer J, Esteban MA (2012) Risks of using antifouling biocides in aquaculture. Int J Mol Sci 13:1541–1560

    Article  CAS  Google Scholar 

  • Gully JR, Bottomley JP, Baird RB (1999) Effects of sporophyll storage on giant kelp Macrocystis pyrifera (Agardh) bioassay. Environ Toxicol Chem 18:1474–1481

    Article  CAS  Google Scholar 

  • Gunthorpe L, Nottage M, Palmer D, Wu R (1995) The development of a fertilisation inhibition assay using gametes of the brown alga Hormosira banksii. Australas J Ecotoxicol 1:25–31

    CAS  Google Scholar 

  • Haglund K, Björklund M, Gunnare S, Sandberg A, Olander U, Pedersen M (1996) New method for toxicity assessment in marine and brackish environments using the macroalga Gracilaria tenuistipitata (Gracilariales, Rhodophyta). Hydrobiologia 326:317–325

    Article  Google Scholar 

  • Hall Jr LW, Giddings JM, Solomon KR, Balcomb R (1999) An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints. Crit Rev Toxicol 29:367

    CAS  Google Scholar 

  • Han T, Choi G-W (2005) A novel marine algal toxicity bioassay based on sporulation inhibition in the green macroalga Ulva pertusa (Chlorophyta). Aquat Toxicol 75:202–212

    Article  CAS  Google Scholar 

  • Harino H, Kitano M, Mori Y, Mochida K, Kakuno A, Arima S (2005) Degradation of antifouling booster biocides in water. J Mar Biol Assoc UK 85:33–38

    Article  CAS  Google Scholar 

  • Hay CH, Luckens PA (1987) The Asian kelp Undaria pinnatifida (Phaeophyta: Laminariales) found in a New Zealand harbour. New Zeal J Bot 25:329–332

    Article  Google Scholar 

  • Hewitt CL, Campbell ML, McEnnulty F, Moore KM, Murfet NB, Robertson B, Schaffelke B (2005) Efficacy of physical removal of a marine pest: the introduced kelp Undaria pinnatifida in a Tasmanian Marine Reserve. Biol Invasions 7:251–263

    Article  Google Scholar 

  • ISO (2020) ISO/TC147/SC5 Biological Methods. https://www.iso.org/committee/52972/x/catalogue/p/1/u/0/w/0/d/0

  • Jacobson AH, Willingham GL (2000) Sea-Nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. Sci Total Environ 258:103–110

    Article  CAS  Google Scholar 

  • Johansson P, Eriksson KM, Axelsson L, Blanck H (2012) Effects of seven antifouling compounds on photosynthesis and inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus). Arch Environ Con Toxicol 63:365–377

    Article  CAS  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. In: Samson FB, Knopf FL (eds) Ecosystem management. Springer, New York, p 130–147

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  • Karlsson J, Eklund B (2004) New biocide-free anti-fouling paints are toxic. Mar Pollut Bull 49:456–464

    Article  CAS  Google Scholar 

  • Karlsson J, Breitholtz M, Eklund B (2006) A practical ranking system to compare toxicity of anti-fouling paints. Mar Pollut Bull 52:1661–1667

    Article  CAS  Google Scholar 

  • Karlsson J, Ytreberg E, Eklund B (2010) Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. Environ Pollut 158:681–687

    Article  CAS  Google Scholar 

  • Kevekordes K (2001) Toxicity tests using developmental stages of Hormosira banksii (Phaeophyta) identify ammonium as a damaging component of secondary treated sewage effluent discharged into Bass Strait, Victoria, Australia. Mar Ecol Prog Ser 219:139–148

    Article  CAS  Google Scholar 

  • Klemm DJ, Morrison GE, Norberg-King TJ, Peltier WH, Heber MA (1992) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. U.S. Environmental Protection Agency, Cincinnati, OH 45268. EPA/600/4-89/001

  • Kottuparambil S, Lee S, Han T (2013) Single and interactive effects of the antifouling booster herbicides diuron and Irgarol 1051 on photosynthesis in the marine cyanobacterium, Arthrospira maxima. Toxicol Environ Health Sci 5:71–81

    Article  Google Scholar 

  • Koutsaftis A, Aoyama I (2006) The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Environ Toxicol 21:432–439

    Article  CAS  Google Scholar 

  • Kumar KS, Choo K-s, Yea SS, Seo Y, Han T (2010) Effects of the phenylurea herbicide diuron on the physiology of Saccharina japonica aresch. Toxicol Environ Health Sci 2:188–199

    Article  Google Scholar 

  • Larsen DK, Wagner I, Gustavson K, Forbes VE, Lund T (2003) Long-term effect of Sea-Nine on natural coastal phytoplankton communities assessed by pollution induced community tolerance. Aquat Toxicol 62:35–44

    Article  CAS  Google Scholar 

  • Lee H, Lee J, Brown MT, Park J, Vieira C, Han T (2019b) Toxicity testing of cosmetic ingredients using gametophyte beads of the brown alga Undaria pinnatifida (Laminariales, Phaeophyta). J Appl Phycol 31:2011–2023

    Article  CAS  Google Scholar 

  • Lee H, Park J, Shin K, Depuydt S, Choi S, De Saeger J, Han T (2020) Application of a programmed semi-automated Ulva pertusa bioassay for testing single toxicants and stream water quality. Aquat Toxicol 221:105426

    Article  CAS  Google Scholar 

  • Lee H, Brown MT, Choi S, Pandey LK, De Saeger J, Shin K, Kim J, Depuydt S, Han T, Park J (2019a) Reappraisal of the toxicity test method using the green alga Ulva pertusa Kjellman (Chlorophyta). J Hazard Mater 369:763–769

    Article  CAS  Google Scholar 

  • Lee JA, Brinkhuis BH (1988) Seasonal light and temperature interaction effects on development of Laminaria saccharina (Phaeophyta) gametophytes and juvenile sporophytes. J Phycol 24:181–191

    Article  Google Scholar 

  • Logan S (2002) IPS–INCHEM. Chemical product assessment section, therapeutic goods administration. Tolylfluanid. Therapeutic Goods Administration Department of Health and Ageing, Canberra, Australia

    Google Scholar 

  • Lüning K (1981) Egg release in gametophytes of Laminaria saccharina: induction by darkness and inhibition by blue light and UV. Br Phycol J 16:379–393

    Article  Google Scholar 

  • Lüning K (1990) Seaweeds: their environment, biogeography, and ecophysiology. John Wiley and Sons, New York

  • Mandrekar P (2018) Culturing Undaria pinnatifida gametophytes. Dissertation, Auckland University of Technology

  • Maraldo K, Dahllöf I (2004) Indirect estimation of degradation time for zinc pyrithione and copper pyrithione in seawater. Mar Pollut Bull 48:894–901

    Article  CAS  Google Scholar 

  • Marcheselli M, Rustichelli C, Mauri M (2010) Novel antifouling agent zinc pyrithione: determination, acute toxicity, and bioaccumulation in marine mussels (Mytilus galloprovincialis). Environ Toxicol Chem 29:2583–2592

    Article  CAS  Google Scholar 

  • Martin JP, Cuevas JM (2006) First record of Undaria pinnatifida (Laminariales, Phaeophyta) in Southern Patagonia, Argentina. Biol Invasions 8:1399

    Article  Google Scholar 

  • Martins SE, Fillmann G, Lillicrap A, Thomas KV (2018) Review: Ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling 34:34–52

    Article  CAS  Google Scholar 

  • Molino PJ, Wetherbee R (2008) The biology of biofouling diatoms and their role in the development of microbial slimes. Biofouling 24:365–379

    Article  CAS  Google Scholar 

  • Moro L, Pezzotti G, Turemis M, Sanchís J, Farré M, Denaro R, Giacobbe MG, Crisafi F, Giardi MT (2018) Fast pesticide pre-screening in marine environment using a green microalgae-based optical bioassay. Mar Pollut Bull 129:212–221

    Article  CAS  Google Scholar 

  • Murphy JT, Johnson MP, Viard F (2016) A modelling approach to explore the critical environmental parameters influencing the growth and establishment of the invasive seaweed Undaria pinnatifida in Europe. J Theor Biol 396:105–115

    Article  Google Scholar 

  • Murphy JT, Johnson MP, Viard F (2017) A theoretical examination of environmental effects on the life cycle schedule and range limits of the invasive seaweed Undaria pinnatifida. Biol Invasions 19:691–702

    Article  Google Scholar 

  • Myers JH, Duda S, Gunthorpe L, Allinson G (2006) Assessing the performance of Hormosira banksii (Turner) Desicaine germination and growth assay using four reference toxicants. Ecotoxicol Environ Saf 64:304–311

    Article  CAS  Google Scholar 

  • OECD (1994) Guidelines for the testing of chemicals. Organisation for Economic Corporation and Development

  • OECD (2000) Guidance document on aquatic toxicity testing of difficult substances and mixtures. Organisation for Economic Corporation and Development, Paris

    Google Scholar 

  • OECD (2002) Guidelines for the testing of chemicals: Lemna sp. growth inhibition test, Guideline 221. Organisation for Economic Corporation and Development, Berlin

    Google Scholar 

  • Ohlauson C, Eriksson KM, Blanck H (2012) Short-term effects of medetomidine on photosynthesis and protein synthesis in periphyton, epipsammon and plankton communities in relation to predicted environmental concentrations. Biofouling 28:491–499

    Article  CAS  Google Scholar 

  • Okamura H, Aoyama I, Takami T, Maruyama T, Suzuki Y, Matsumoto M, Katsuyama I, Hamada J, Beppu T, Tanaka O (2000) Phytotoxicity of the new antifouling compound Irgarol 1051 and a major degradation product. Mar Pollut Bull 40:754–763

    Article  CAS  Google Scholar 

  • Park J, Jin G-S, Hwang MS, Brown MT, Han T (2016) Toxicity tests using the kelp Undaria pinnatifida for heavy metal risk assessment. Toxicol Environ Health Sci 8:86–95

    Article  Google Scholar 

  • Park J, Brown MT, Depuydt S, Kim JK, Won D-S, Han T (2017) Comparing the acute sensitivity of growth and photosynthetic endpoints in three Lemna species exposed to four herbicides. Environ Pollut 220:818–827

    Article  CAS  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Hattori A (ed) Cultures and Collections of Algae. Proceedings of US-Japan Conference. Japan Society of Plant Physiology, Kyoto, p 63–75

  • Sakkas VA, Konstantinou IK, Albanis TA (2002) Aquatic phototransformation study of the antifouling agent Sea-Nine 211: identification of byproducts and the reaction pathway by gas chromatography–mass spectroscopy. J Chromatogr A 959:215–227

    Article  CAS  Google Scholar 

  • Salinas J, Llera E, Fuertes C (1996) Nota sobre la presencia de Undaria pinnatifida (Harvey) Suringar (Laminariales, Phaeophyta) en Asturias (mar Cantábrico). Bol Instit Esp Oceanogr 12:77–79

    Google Scholar 

  • Scarlett A, Donkin P, Fileman T, Morris R (1999) Occurrence of the antifouling herbicide, irgarol 1051, within coastal-water seagrasses from Queensland, Australia. Mar Pollut Bull 38:687–691

    Article  CAS  Google Scholar 

  • Seery CR, Gunthorpe L, Ralph PJ (2006) Herbicide impact on Hormosira banksii gametes measured by fluorescence and germination bioassays. Environ Pollut 140:43–51

    Article  CAS  Google Scholar 

  • Silva PC, Woodfield RA, Cohen AN, Harris LH, Goddard JH (2002) First report of the Asian kelp Undaria pinnatifida in the northeastern Pacific Ocean. Biol Invasions 4:333–338

    Article  Google Scholar 

  • Sjollema SB, MartínezGarcía G, van der Geest HG, Kraak MH, Booij P, Vethaak AD, Admiraal W (2014) Hazard and risk of herbicides for marine microalgae. Environ Pollut 187:106–111

    Article  CAS  Google Scholar 

  • Sun M, Chang Z, Van den Brink PJ, Li J, Zhao F, Rico A (2016) Environmental and human health risks of antimicrobials used in Fenneropenaeus chinensis aquaculture production in China. Environ Sci Pollut Res 23:15689–15702

    Article  CAS  Google Scholar 

  • Talvitie J, Heinonen M, Pääkkönen J-P, Vahtera E, Mikola A, Setälä O, Vahala R (2015) Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci Technol 72:1495–1504

    Article  CAS  Google Scholar 

  • Thomas DN, Kirst GO (1991) Differences in osmoacclimation between sporophytes and gametophytes of the brown alga Ectocarpus siliculosus. Physiol Plant 83:281–289

    Article  CAS  Google Scholar 

  • Thomas KV, Brooks S (2010) The environmental fate and effects of antifouling paint biocides. Biofouling 26:73–88

    Article  CAS  Google Scholar 

  • Thomas KV, McHugh M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: inputs, occurrence and environmental fate. Sci Total Environ 293:117–127

    Article  CAS  Google Scholar 

  • Thomas KV, McHugh M, Hilton M, Waldock M (2003) Increased persistence of antifouling paint biocides when associated with paint particles. Environ Pollut 123:153–161

    Article  CAS  Google Scholar 

  • Thornber CS, Kinlan BP, Graham MH, Stachowicz JJ (2004) Population ecology of the invasive kelp Undaria pinnatifida in California: environmental and biological controls on demography. Mar Ecol Prog Ser 268:69–80

    Article  Google Scholar 

  • Thursby GB, Steele RL, Kane ME (1985) Effect of organic chemicals on growth and reproduction in the marine red alga Champia parvula. Environ Toxicol Chem 4:797–805

    Article  CAS  Google Scholar 

  • Turner A (2010) Marine pollution from antifouling paint particles. Mar Pollut Bull 60:159–171

    Article  CAS  Google Scholar 

  • USEPA (2020) Whole effluent toxicity methods. https://www.epa.gov/cwa-methods/whole-effluent-toxicity-methods

  • Vilà M, Basnou C, Gollasch S, Josefsson M, Pergl J, Scalera R (2009) One hundred of the most invasive alien species in Europe. In: Hulme PE (ed) Handbook of alien species in Europe. Springer, New York, p 265–268

  • Visch W, Rad-Menéndez C, Nylund GM, Pavia H, Ryan MJ, Day J (2019) Underpinning the development of seaweed biotechnology: cryopreservation of brown algae (Saccharina latissima) gametophytes. Biopreserv Biobank 17:378–386

    Article  CAS  Google Scholar 

  • Voulvoulis N, Scrimshaw M, Lester J (1999) Alternative antifouling biocides. Appl Organomet Chem 13:135–143

    Article  CAS  Google Scholar 

  • Wang B, Zhang E, Gu Y, Ning S, Wang Q, Zhou J (2011) Cryopreservation of brown algae gametophytes of Undaria pinnatifida by encapsulation–vitrification. Aquaculture 317:89–93

    Article  Google Scholar 

  • Wendt I, Arrhenius Å, Backhaus T, Hilvarsson A, Holm K, Langford K, Tunovic T, Blanck H (2013) Effects of five antifouling biocides on settlement and growthof zoospores from the marine macroalga Ulva lactuca L. Bull Environ Contam Toxicol 91:426–432

  • Willingham G, Jacobson A (1996) Designing an environmentally safe marine antifoulant. In: Stephen CD, Roger LG (eds) Designing Safer Chemicals. ACS Publications, Washington DC, p 224–233

  • Zepp RG, Cline DM (1977) Rates of direct photolysis in aquatic environment. Environ Sci Technol 11:359–366

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihae Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Depuydt, S., Choi, S. et al. Rapid toxicity assessment of six antifouling booster biocides using a microplate-based chlorophyll fluorescence in Undaria pinnatifida gametophytes. Ecotoxicology 29, 559–570 (2020). https://doi.org/10.1007/s10646-020-02207-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02207-2

Keywords

Navigation