Skip to main content

Advertisement

Log in

Clinical practice: chimeric antigen receptor (CAR) T cells: a major breakthrough in the battle against cancer

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Chimeric antigen receptor (CAR) T cell therapy has come of age, offering a potentially curative option for patients who are refractory to standard anti-cancer treatments. The success of CAR T cell therapy in the setting of acute lymphoblastic leukemia and specific types of B cell lymphoma led to rapid regulatory approvals of CD19-directed CAR T cells, first in the United States and subsequently across the globe. Despite these major milestones in the field of immuno-oncology, growing experience with CAR T cells has also highlighted the major limitations of this strategy, namely challenges associated with manufacturing a bespoke patient–specific product, intrinsic immune cell defects leading to poor CAR T cell function as well as persistence, and/or tumor cell resistance resulting from loss or modulation of the targeted antigen. In addition, both on- and off-tumor immunotoxicities and the financial burden inherent in conventional cellular biomanufacturing often hamper the success of CAR T cell-based treatment approaches. Herein, we provide an overview of the opportunities and challenges related to the first form of gene transfer therapy to gain commercial approval in the United States. Ongoing advances in the areas of genetic engineering, precision genome editing, toxicity mitigation methods and cell manufacturing will improve the efficacy and safety of CAR T cells for hematologic malignancies and expand the use of this novel class of therapeutics to reach solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kuwana Y, Asakura Y, Utsunomiya N, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun. 1987;149(3):960–8. https://doi.org/10.1016/0006-291x(87)90502-x.

    Article  CAS  PubMed  Google Scholar 

  2. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86(24):10024–8. https://doi.org/10.1073/pnas.86.24.10024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Irving BA, Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991;64(5):891–901. https://doi.org/10.1016/0092-8674(91)90314-o.

    Article  CAS  PubMed  Google Scholar 

  4. Krause A, Guo HF, Latouche JB, et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med. 1998;188(4):619–26. https://doi.org/10.1084/jem.188.4.619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Milone MC, Fish JD, Carpenito C, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17(8):1453–64. https://doi.org/10.1038/mt.2009.83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levine BL, Miskin J, Wonnacott K, Keir C. Global Manufacturing of CAR T Cell Therapy. Mol Ther Methods Clin Dev. 2017;4:92–101. https://doi.org/10.1016/j.omtm.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  7. Vormittag P, Gunn R, Ghorashian S, Veraitch FS. A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol. 2018;53:164–81. https://doi.org/10.1016/j.copbio.2018.01.025.

    Article  CAS  PubMed  Google Scholar 

  8. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48. https://doi.org/10.1056/NEJMoa1709866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park JH, Riviere I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. https://doi.org/10.1056/NEJMoa1709919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghorashian S, Kramer AM, Onuoha S, et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat Med. 2019. https://doi.org/10.1038/s41591-019-0549-5.

    Article  PubMed  Google Scholar 

  11. Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor t cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. https://doi.org/10.1056/NEJMoa1708566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. https://doi.org/10.1056/NEJMoa1707447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. https://doi.org/10.1056/NEJMoa1804980.

    Article  CAS  PubMed  Google Scholar 

  14. Garfall AL, Maus MV, Hwang WT, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373(11):1040–7. https://doi.org/10.1056/NEJMoa1504542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yan Z, Cao J, Cheng H, et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial. Lancet Haematol. 2019. https://doi.org/10.1016/S2352-3026(19)30115-2.

    Article  PubMed  Google Scholar 

  16. Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726–37. https://doi.org/10.1056/NEJMoa1817226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 2019;129(6):2210–21. https://doi.org/10.1172/JCI126397.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17. https://doi.org/10.1056/NEJMoa1407222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. https://doi.org/10.1126/scitranslmed.aac5415.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fraietta JA, Lacey SF, Orlando EJ, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563–71. https://doi.org/10.1038/s41591-018-0010-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turtle CJ, Hanafi LA, Berger C, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38. https://doi.org/10.1172/JCI85309.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. https://doi.org/10.1016/S0140-6736(14)61403-3.

    Article  CAS  PubMed  Google Scholar 

  23. Hurton LV, Singh H, Najjar AM, et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci USA. 2016;113(48):E7788–E7797797. https://doi.org/10.1073/pnas.1610544113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fraietta JA, Nobles CL, Sammons MA, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature. 2018;558(7709):307–12. https://doi.org/10.1038/s41586-018-0178-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scholler J, Brady TL, Binder-Scholl G, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med. 2012;4(132):132ra53. https://doi.org/10.1126/scitranslmed.3003761.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sotillo E, Barrett DM, Black KL, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5(12):1282–95. https://doi.org/10.1158/2159-8290.Cd-15-1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bagashev A, Sotillo E, Tang CHA, et al. CD19 alterations emerging after CD19-directed immunotherapy cause retention of the misfolded protein in the endoplasmic reticulum. Mol Cell Biol. 2018;38(21):e00383–e418. https://doi.org/10.1128/MCB.00383-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Orlando EJ, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24(10):1504. https://doi.org/10.1038/s41591-018-0146-z.

    Article  CAS  PubMed  Google Scholar 

  29. Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–8. https://doi.org/10.1038/nm.4441.

    Article  CAS  PubMed  Google Scholar 

  30. Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128(13):1688–700. https://doi.org/10.1182/blood-2016-04-711903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walsh Z, Ross S, Fry TJ. Multi-specific CAR targeting to prevent antigen escape. Curr Hematol Malig Rep. 2019. https://doi.org/10.1007/s11899-019-00537-5.

    Article  PubMed  Google Scholar 

  32. Geyer MB, Riviere I, Senechal B, et al. Safety and tolerability of conditioning chemotherapy followed by CD19-targeted CAR T cells for relapsed/refractory CLL. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.122627.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013;5(215):215ra172. https://doi.org/10.1126/scitranslmed.3006597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kasakovski D, Xu L, Li Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies. J hematol Oncol. 2018;11(1):91. https://doi.org/10.1186/s13045-018-0629-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Finney OC, Brakke HM, Rawlings-Rhea S, et al. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J Clin Invest. 2019;129(5):2123–32. https://doi.org/10.1172/JCI125423.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu Y, Zhang M, Ramos CA, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123(24):3750–9. https://doi.org/10.1182/blood-2014-01-552174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blaeschke F, Stenger D, Kaeuferle T, et al. Induction of a central memory and stem cell memory phenotype in functionally active CD4(+) and CD8(+) CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19(+) acute lymphoblastic leukemia. Cancer Immun Immunother CII. 2018;67(7):1053–66. https://doi.org/10.1007/s00262-018-2155-7.

    Article  CAS  Google Scholar 

  38. van Bruggen JAC, Martens AWJ, Fraietta JA, et al. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8(+) T cells and impede CAR T-cell efficacy. Blood. 2019;134(1):44–58. https://doi.org/10.1182/blood.2018885863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6(6):664–79. https://doi.org/10.1158/2159-8290.CD-16-0040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321–30. https://doi.org/10.1182/blood-2016-04-703751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Staedtke V, Bai RY, Kim K, et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature. 2018;564(7735):273–7. https://doi.org/10.1038/s41586-018-0774-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karschnia P, Jordan JT, Forst DA, et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood. 2019;133(20):2212–21. https://doi.org/10.1182/blood-2018-12-893396.

    Article  CAS  PubMed  Google Scholar 

  43. Gust J, Taraseviciute A, Turtle CJ. Neurotoxicity associated with CD19-targeted CAR-T cell therapies. CNS Drugs. 2018;32(12):1091–101. https://doi.org/10.1007/s40263-018-0582-9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hunter BD, Jacobson CA. CAR T-cell associated neurotoxicity: mechanisms, clinicopathologic correlates, and future directions. J Natl Cancer Inst. 2019. https://doi.org/10.1093/jnci/djz017.

    Article  PubMed  Google Scholar 

  45. Torre M, Solomon IH, Sutherland CL, et al. Neuropathology of a case with fatal CAR T-cell-associated cerebral edema. J Neuropathol Exp Neurol. 2018;77(10):877–82. https://doi.org/10.1093/jnen/nly064.

    Article  CAS  PubMed  Google Scholar 

  46. Guha-Thakurta N, Wierda WG. Cerebral edema secondary to chimeric antigen receptor T-cell immunotherapy. Neurology. 2018;91(18):843. https://doi.org/10.1212/WNL.0000000000006436.

    Article  PubMed  Google Scholar 

  47. Gust J, Hay KA, Hanafi LA, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7(12):1404–19. https://doi.org/10.1158/2159-8290.CD-17-0698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lamers CH, Sleijfer S, Vulto AG, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006;24(13):e20–e2222. https://doi.org/10.1200/JCO.2006.05.9964.

    Article  PubMed  Google Scholar 

  49. Lamers CH, Sleijfer S, van Steenbergen S, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21(4):904–12. https://doi.org/10.1038/mt.2013.17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51. https://doi.org/10.1038/mt.2010.24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Linette GP, Stadtmauer EA, Maus MV, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71. https://doi.org/10.1182/blood-2013-03-490565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morgan RA, Chinnasamy N, Abate-Daga D, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51. https://doi.org/10.1097/CJI.0b013e3182829903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kershaw MH, Westwood JA, Parker LL, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006;12(20 Pt 1):6106–15. https://doi.org/10.1158/1078-0432.CCR-06-1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Park JR, Digiusto DL, Slovak M, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007;15(4):825–33. https://doi.org/10.1038/sj.mt.6300104.

    Article  CAS  PubMed  Google Scholar 

  55. Louis CU, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6. https://doi.org/10.1182/blood-2011-05-354449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ahmed N, Brawley VS, Hegde M, et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33(15):1688–96. https://doi.org/10.1200/JCO.2014.58.0225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. O'Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aaa0984.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Beatty GL, O'Hara MH, Lacey SF, et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology. 2018;155(1):29–322. https://doi.org/10.1053/j.gastro.2018.03.029.

    Article  CAS  PubMed  Google Scholar 

  59. Brown CE, Alizadeh D, Starr R, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–9. https://doi.org/10.1056/NEJMoa1610497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thistlethwaite FC, Gilham DE, Guest RD, et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother CII. 2017;66(11):1425–36. https://doi.org/10.1007/s00262-017-2034-7.

    Article  CAS  PubMed  Google Scholar 

  61. Oliver AJ, Lau PKH, Unsworth AS, et al. Tissue-dependent tumor microenvironments and their impact on immunotherapy responses. Front Immunol. 2018;9:70. https://doi.org/10.3389/fimmu.2018.00070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Terabe M, Matsui S, Park JM, et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 2003;198(11):1741–52. https://doi.org/10.1084/jem.20022227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zea AH, Rodriguez PC, Atkins MB, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Can Res. 2005;65(8):3044–8. https://doi.org/10.1158/0008-5472.CAN-04-4505.

    Article  CAS  Google Scholar 

  64. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007;117(5):1155–66. https://doi.org/10.1172/JCI31422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Munder M, Eichmann K, Modolell M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol. 1998;160(11):5347–54.

    CAS  PubMed  Google Scholar 

  66. Brown JM, Recht L, Strober S. The promise of targeting macrophages in cancer therapy. Clin Cancer Res. 2017;23(13):3241–50. https://doi.org/10.1158/1078-0432.CCR-16-3122.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016;37(3):193–207. https://doi.org/10.1016/j.it.2016.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hornyak L, Dobos N, Koncz G, et al. The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. Front Immunol. 2018;9:151. https://doi.org/10.3389/fimmu.2018.00151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mellor AL, Lemos H, Huang L. Indoleamine 2,3-dioxygenase and tolerance: where are we now? Front immunol. 2017;8:1360. https://doi.org/10.3389/fimmu.2017.01360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miao J, Lu X, Hu Y, et al. Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget. 2017;8(52):89802–10. https://doi.org/10.18632/oncotarget.21155.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang D, DuBois RN. The role of prostaglandin E(2) in tumor-associated immunosuppression. Trends Mol Med. 2016;22(1):1–3. https://doi.org/10.1016/j.molmed.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  72. Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10:128. https://doi.org/10.3389/fimmu.2019.00128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weinkove R, George P, Dasyam N, McLellan AD. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunol. 2019;8(5):e1049. https://doi.org/10.1002/cti2.1049.

    Article  Google Scholar 

  74. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15(8):1145–54. https://doi.org/10.1517/14712598.2015.1046430.

    Article  CAS  PubMed  Google Scholar 

  75. Yeku OO, Brentjens RJ. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans. 2016;44(2):412–8. https://doi.org/10.1042/BST20150291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koneru M, Purdon TJ, Spriggs D, Koneru S, Brentjens RJ. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology. 2015;4(3):e994446. https://doi.org/10.4161/2162402X.2014.994446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suarez ER, de Chang K, Sun J, et al. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget. 2016;7(23):34341–555. https://doi.org/10.18632/oncotarget.9114.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Li S, Siriwon N, Zhang X, et al. Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res. 2017;23(22):6982–92. https://doi.org/10.1158/1078-0432.CCR-17-0867.

    Article  CAS  PubMed  Google Scholar 

  79. Rafiq S, Yeku OO, Jackson HJ, et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol. 2018;36(9):847–56. https://doi.org/10.1038/nbt.4195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37(9):1049–58. https://doi.org/10.1038/s41587-019-0192-1.

    Article  CAS  PubMed  Google Scholar 

  81. Wilkie S, Picco G, Foster J, et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol. 2008;180(7):4901–9. https://doi.org/10.4049/jimmunol.180.7.4901.

    Article  CAS  PubMed  Google Scholar 

  82. Posey AD Jr, Schwab RD, Boesteanu AC, et al. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity. 2016;44(6):1444–54. https://doi.org/10.1016/j.immuni.2016.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xie YJ, Dougan M, Jailkhani N, et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci USA. 2019;116(16):7624–31. https://doi.org/10.1073/pnas.1817147116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–5. https://doi.org/10.1038/nbt.2459.

    Article  CAS  PubMed  Google Scholar 

  85. Liu X, Ranganathan R, Jiang S, et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Can Res. 2016;76(6):1578–90. https://doi.org/10.1158/0008-5472.CAN-15-2524.

    Article  CAS  Google Scholar 

  86. Roybal KT, Rupp LJ, Morsut L, et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 2016;164(4):770–9. https://doi.org/10.1016/j.cell.2016.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Adusumilli PS, Cherkassky L, Villena-Vargas J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med. 2014;6(261):261ra151. https://doi.org/10.1126/scitranslmed.3010162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tchou J, Zhao Y, Levine BL, et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res. 2017;5(12):1152–61. https://doi.org/10.1158/2326-6066.CIR-17-0189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bach PB, Giralt SA, Saltz LB. FDA approval of tisagenlecleucel: promise and complexities of a $475000 cancer drug. JAMA. 2017;318(19):1861–2. https://doi.org/10.1001/jama.2017.15218.

    Article  PubMed  Google Scholar 

  90. Lin JK, Muffly LS, Spinner MA, et al. Cost effectiveness of chimeric antigen receptor T-cell therapy in multiply relapsed or refractory adult large B-cell lymphoma. J Clin Oncol. 2019;37(24):2105–19. https://doi.org/10.1200/JCO.18.02079.

    Article  CAS  PubMed  Google Scholar 

  91. Schietinger A, Philip M, Krisnawan VE, et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity. 2016;45(2):389–401. https://doi.org/10.1016/j.immuni.2016.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ren J, Liu X, Fang C, et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23(9):2255–66. https://doi.org/10.1158/1078-0432.CCR-16-1300.

    Article  CAS  PubMed  Google Scholar 

  93. Qasim W, Zhan H, Samarasinghe S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aaj2013.

    Article  PubMed  Google Scholar 

  94. Lentz R, Benson AB 3rd, Kircher S. Financial toxicity in cancer care: Prevalence, causes, consequences, and reduction strategies. J Surg Oncol. 2019;120(1):85–92. https://doi.org/10.1002/jso.25374.

    Article  PubMed  Google Scholar 

  95. Witte J, Mehlis K, Surmann B, et al. Methods for measuring financial toxicity after cancer diagnosis and treatment: a systematic review and its implications. Ann oncol. 2019;30(7):1061–70. https://doi.org/10.1093/annonc/mdz140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dusetzina SB. Drug pricing trends for orally administered anticancer medications reimbursed by commercial health plans, 2000–2014. JAMA Oncol. 2016;2(7):960–1. https://doi.org/10.1001/jamaoncol.2016.0648.

    Article  PubMed  Google Scholar 

  97. Byrd JC, Jones JJ, Woyach JA, Johnson AJ, Flynn JM. Entering the era of targeted therapy for chronic lymphocytic leukemia: impact on the practicing clinician. J Clin Oncol. 2014;32(27):3039–47. https://doi.org/10.1200/JCO.2014.55.8262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33. https://doi.org/10.1056/NEJMoa1302369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pabla S, Conroy JM, Nesline MK, et al. Proliferative potential and resistance to immune checkpoint blockade in lung cancer patients. J Immunother Cancer. 2019;7(1):27. https://doi.org/10.1186/s40425-019-0506-3.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Andrews A. Treating with checkpoint inhibitors-figure $1 million per patient. American Health Drug Benef. 2015;8(Spec Issue):9.

    Google Scholar 

  102. Ghassemi S, Nunez-Cruz S, O'Connor RS, et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol Res. 2018;6(9):1100–9. https://doi.org/10.1158/2326-6066.CIR-17-0405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. ClinicalTrials.Gov. CAR therapy (2019). https://clinicaltrials.gov/ct2/results?term=CAR+therapy-&recrs=abdf. Accessed 12 Jul 2019

  104. Yakoub-Agha I, Chabannon C, Bader P, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020;105(2):297–316. https://doi.org/10.3324/haematol.2019.229781.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Maude SL, Teachey DT, Rheingold SR, et al. Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL. J Clin Oncol. 2016;34(15_suppl):3011. https://doi.org/10.1200/JCO.2016.34.15_suppl.3011.

    Article  Google Scholar 

  106. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2018;380(1):45–56. https://doi.org/10.1056/NEJMoa1804980.

    Article  PubMed  Google Scholar 

  107. Brindley DA, Davie NL, Sahlman WA, et al. Promising growth and investment in the cell therapy industry during the first quarter of 2012. Cell Stem Cell. 2012;10(5):492–6. https://doi.org/10.1016/j.stem.2012.04.018.

    Article  CAS  PubMed  Google Scholar 

  108. Santomasso B, Bachier C, Westin J, Rezvani K, Shpall EJ. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. American Society of Clinical Oncology educational book American Society of Clinical Oncology Annual Meeting. 2019;39:433–44. doi:10.1200/EDBK_238691.

Download references

Acknowledgements

This work was supported by the Bob Levis Funding Group (JAF). Additional funding comes from P01 CA214278 (JJM and JAF), R01 CA241762 (JJM and JAF) and U54 CA244711 (JAF) grants from the National Cancer Institute, a U01 AG066100 (JAF) grant from the National Institute on Aging, the Gabrielle’s Angel Foundation (JAF) and the Alliance for Cancer Gene Therapy (JAF). The design of figures was aided by licensed materials from ScienceSlides (https://www.visiscience.com) and the Parker Institute for Cancer Immunotherapy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Fraietta.

Ethics declarations

Conflict of interest

JJM and JAF hold patents related to CAR T cell therapy and receive associated royalties. The remaining authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lundh, S., Jung, IY., Dimitri, A. et al. Clinical practice: chimeric antigen receptor (CAR) T cells: a major breakthrough in the battle against cancer. Clin Exp Med 20, 469–480 (2020). https://doi.org/10.1007/s10238-020-00628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-020-00628-1

Keywords

Navigation