Skip to main content
Log in

Antifungal compounds with anticancer potential from Trichoderma sp. P8BDA1F1, an endophytic fungus from Begonia venosa

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fungi in the genus Trichoderma are notorious producers of secondary metabolites with diverse applications, such as antibacterial, antifungal, and plant growth-promoting properties. Peptaibols are linear peptides produced by such fungi, with more than 440 compounds described to date, including tricholongins, longibrachins, trichobrachins, and trichovirins. Peptaibols are synthesized by non-ribosomal peptide synthetases and they have several biological activities. Our research group isolated four peptaibols (6DP2, 6DP3, 6DP4, and 6DP5) with antifungal activity against the plant pathogen Colletotrichum gloeosporioides and the proteasome (a cancer chemotherapy target) from Trichoderma sp. P8BDA1F1, an endophytic fungus from Begonia venosa. The ethyl acetate extract of this endophyte showed activity of 6.01% and 75% against C. gloeosporioides and the proteasome, respectively. The isolated compounds were identified by MS/MS and compared to literature data, suggesting the presence of trilongins BI, BII, BIII, and BIV, which are peptaibols containing 20 amino acid residues. The minimum inhibitory concentration against C. gloeosporioides was 40 μM for trilongin BI, 320 μM for trilongin BII, 160 μM for trilongin BIII, and 310 μM for trilongin BIV. BI–BIV trilongins inhibited proteasome ChTL activity, with IC50 values of 6.5 ± 2.7; 4.7 ± 1.8; 6.3 ± 2.2; and 2.7 ± 0.5 μM, respectively. The compounds were tested ex vivo against the intracellular amastigotes of Leishmania (L.) infantum but showed no selectivity. It is the first report of trilongins BI–BIV with antifungal activity against C. gloeosporioides and the proteasome target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Topolovec-Pintarić S (2019) Trichoderma: invisible partner for visible impact on agriculture. IntechOpen. https://doi.org/10.5772/intechopen.83363

  2. Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P, Thakur S, Thakur N, Sudheer S, Yadav N, Yadav AN, Rastegari AA, Singh K (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi. V. 1 Diversity and Enzymes Perspectives. Springer, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

  3. Krause C, Kirschbaum J, Brückner H (2007) Peptaibiomics: microheterogeneity, dynamics, and sequences of Trichobrachins, peptaibiotics from Trichoderma parceramosum BISSET (T. longibrachiatum RIFAI). Chem Biodivers 4:1083–1102

    Article  CAS  PubMed  Google Scholar 

  4. Neumann NK, Stoppacher N, Zeilinger S, Degenkolb T, Brückner H, Schuhmacher R (2015) The peptaibiotics database—a comprehensive online resource. Chem Biodivers 12:743–751. https://doi.org/10.1002/cbdv.201400393

    Article  CAS  PubMed  Google Scholar 

  5. Degenkolb T, Brückner H (2008) Peptaibiomics: towards a myriad of bioactive peptides containing Ca-dialkylamino acids? Chem Biodivers 5:1817–1843

    Article  CAS  PubMed  Google Scholar 

  6. Whitmore L, Wallace BA (2004) Analysis of peptaibol sequence composition: implications for in vivo synthesis and channel formation. Eur Biophys J 33:233–237

    Article  CAS  PubMed  Google Scholar 

  7. Rebuffat S, Prigent Y, Auvin-Guette C, Bodo B (1991) Tricholongins BI and BII, 19-residue peptaibols from Trichoderma longibrachiatum. Solution structure from two-dimensional NMR spectroscopy. Eur J Biochem 201:661–674

    Article  CAS  PubMed  Google Scholar 

  8. Leclerc G, Goulard C, Prigent Y, Bodo B, Wróblewski H, Rebuffat S (2001) Sequences and antimycoplasmic properties of longibrachins LGB II and LGB III, two novel 20-residue peptaibols from Trichoderma longibrachiatum. J Nat Prod 64:164–170

    Article  CAS  PubMed  Google Scholar 

  9. Mohamed-Benkada M, Montagu M, Biard JF et al (2006) New short peptaibols from a marine Trichoderma strain. Rapid Commun Mass Spectrom 20:1176–1180

    Article  CAS  PubMed  Google Scholar 

  10. Ruiz N, Wielgosz-Collin G, Poirier L, Grovel O, Petit KE, Mohamed-Benkada M, du Pont TR, Bissett J, Vérité P, Barnathan G, Pouchus YF (2007) New trichobrachins, 11-residue peptaibols from a marine strain of Trichoderma longibrachiatum. Peptides 28:1351–1358

    Article  CAS  PubMed  Google Scholar 

  11. Daniel JFS, Rodrigues-Filho E (2007) Peptaibols of Trichoderma. Nat Prod Rep 24:1128–1141

    Article  CAS  PubMed  Google Scholar 

  12. Li M-F, Li G-H, Zhang K-Q (2019) Non-volatile metabolites from Trichoderma spp. Metabolites 9:58–81. https://doi.org/10.3390/metabo9030058

    Article  CAS  PubMed Central  Google Scholar 

  13. Touati I, Ruiz N, Thomas O, Druzhinina IS, Atanasova L, Tabbene O, Elkahoui S, Benzekri R, Bouslama L, Pouchus YF, Limam F (2018) Hyporientalin A, an anti-Candida peptaibol from a marine Trichoderma orientale. World J Microbiol Biotechnol 34:98–109. https://doi.org/10.1007/s11274-018-2482-z

    Article  CAS  PubMed  Google Scholar 

  14. Montoya QV, Meirelles LA, Chaverri P, Rodrigues A (2016) Unraveling Trichoderma species in the attine ant environment: description of three new taxa. Antonie Van Leeuwenhoek 109:633–651. https://doi.org/10.1007/s10482-016-0666-9

  15. Atanasova L, Druzhinina IS, Jaklitsch WM (2013) Two hundred Trichoderma species recognized on the basis of molecular phylogeny. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. CAB International, London, pp 10–42

    Chapter  Google Scholar 

  16. Druzhinina IS, Komon-Zelazowska M, Ismaiel A et al (2012) Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genet Biol 49:358–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Samuels GJ, Ismaiel A, Mulaw TB et al (2012) The Longibrachiatum clade of Trichoderma: a revision with new species. Fungal Divers 55:77–108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Foster JW, Woodruff HB (1943) Microbiological aspects of penicillin I. Methods of assay. J Bacteriol 46:187–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. CLSI (2008) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard—second edition. In: CLSI document. Clinical and Laboratory Standards Institute, Wayne, pp M38–MA2

    Google Scholar 

  22. Trivella DBB, Pereira AR, Stein ML, Kasai Y, Byrum T, Valeriote FA, Tantillo DJ, Groll M, Gerwick WH, Moore BS (2014) Enzyme inhibition by hydroamination: design and mechanism of a hybrid carmaphycin-syringolin enone proteasome inhibitor. Chem Biol 21:782–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang JH, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  CAS  PubMed  Google Scholar 

  24. Reimão JQ, Migotto AE, Kossuga MH, Berlinck RG, Tempone AG (2008) Antiprotozoan activity of Brazilian marine cnidarian extracts and of a modified steroid from the octocoral Carijoa riisei. Parasitol Res 103:1445–1450

    Article  PubMed  Google Scholar 

  25. Martins LF, Mesquita JT, Pinto EG et al (2016) Analogues of marine guanidine alkaloids are in vitro effective against Trypanosoma cruzi and selectively eliminate Leishmania (L.) infantum intracellular amastigotes. J Nat Prod 79:2202–2210

    Article  CAS  PubMed  Google Scholar 

  26. Jacques EL (2015) Begoniaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://reflora.jbrj.gov.br/jabot/floradobrasil/FB5616. Accessed 27 November 2015

  27. DPN. Dictionary of Natural Products Database. http://dnp.chemnetbase.com. Accessed 22 October 2016

  28. Mikkola R, Andersson MA, Kredics L, Grigoriev PA, Sundell N, Salkinoja-Salonen MS (2012) 20-residue and 11-residue peptaibols from the fungus Trichoderma longibrachiatum are synergistic in forming Na+/K+-permeable channels and adverse action towards mammalian cells. FEBS J 279:4172–4190

    Article  CAS  PubMed  Google Scholar 

  29. Marik T, Tyagi C, Balázs D et al (2019) Structural diversity and bioactivities of peptaibol compounds from the Longibrachiatum clade of the filamentous fungal genus Trichoderma. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.01434

  30. Goldberg AL (2007) Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35:12–17

    Article  CAS  PubMed  Google Scholar 

  31. Murata S, Yashiroda H, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10:104–115

  32. Li H, Ponder EL, Verdoes M, Asbjornsdottir KH, Deu E, Edgington LE, Lee JT, Kirk CJ, Demo SD, Williamson KC, Bogyo M (2012) Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity. Chem Biol 19:1535–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khare S, Nagle AS, Biggart A, Lai YH, Liang F, Davis LC, Barnes SW, Mathison CJ, Myburgh E, Gao MY, Gillespie JR, Liu X, Tan JL, Stinson M, Rivera IC, Ballard J, Yeh V, Groessl T, Federe G, Koh HX, Venable JD, Bursulaya B, Shapiro M, Mishra PK, Spraggon G, Brock A, Mottram JC, Buckner FS, Rao SP, Wen BG, Walker JR, Tuntland T, Molteni V, Glynne RJ, Supek F (2016) Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537:229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank AZN Fernandes for enzyme preparation and LQPN, LBE, LPP, and LEC for facilities (LNBio, CNPEM). We thank Dr. Roberto G. de S. Berlinck for the equipment and support, Dr. Marco A. de Assis and Dr. Eliane Jacques for plant identification, Marta L.Lima by performing the ex vivo assay against the intracellular amastigotes of L. infantum, and Instituto Chico Mendes and Ibama for helping with plant collections in the Island. SISBio authorization under an accession number (37256-4) and at Sisgen by the code A046A6C.

Funding

Financial support was provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grants 2014/15760-3 and 2014/10753-9) and BIOTA/BIOprospecTA FAPESP (grant 2013/50228-8). Scholarships to Diana F. Grigoletto (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 88881.133610/2016-01 and Conselho Nacional de Desenvolvimento Científico e Tecnológico 142079/2016-2) and Ana M. Correia (FAPESP: 2014/12021-5) are also gratefully recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone P. Lira.

Ethics declarations

The Ethics Committee on Animal Research approved the project (number CEUA IAL/Pasteur 02/2011), according to the “Guide to the Care and Use of Laboratory Animals” of the National Academy of Sciences.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Luis Henrique Souza Guimaraes.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1989 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoletto, D.F., Trivella, D.B.B., Tempone, A.G. et al. Antifungal compounds with anticancer potential from Trichoderma sp. P8BDA1F1, an endophytic fungus from Begonia venosa. Braz J Microbiol 51, 989–997 (2020). https://doi.org/10.1007/s42770-020-00270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00270-9

Keywords

Navigation