Skip to main content
Log in

Zooplankton-population dynamics in the Salado-River basin (Buenos Aires, Argentina) in relation to hydraulic works and resulting wetland function

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The construction of drainage canals in the upper stretch of the Salado River has caused the input of salty waters into the basin, with unexplored consequences on zooplankton dynamics and reproduction. To determine the consequences of those anthropic interventions, zooplankton samples were taken under four hydrologic conditions (high water, mean flows, low flows, very low flows) in the canals and the river watercourse. Environmental variables were measured in situ (pH, temperature, conductivity, turbidity, flow velocity, water level, dissolved-oxygen concentration) and in the laboratory (chlorophyll a, nutrients). A total of 166 zooplankton taxa was identified, among which rotifers and ciliates were the most diverse and abundant. A redundancy analysis indicated temperature, conductivity, and water discharge to be the main constraints to zooplankton development. Accordingly, abundance peaks were recorded during mean and low flows in the spring and summer, and minimum values during high water (autumn–winter floodings). The dominant species, Brachionus plicatilis s.l., recorded outstanding densities at ca. 34,800 ind L–1—that figure representing a worldwide novelty—during low flows in the canals and at the river downstream site. The wetlands and shallow lakes in the study area acted as sources of inocula for the river, increasing the total abundance of zooplankton, gravid females, nauplii, copepodites, juveniles, and total number of eggs being carried at the second river site downstream from the canals’ discharges. The presence of diverse habitats coupled with the alternation of hydrologic conditions have resulted in the development of a very rich, complex zooplankton community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • APHA (2012) Standard methods for the examination of water and wastewaters, 22nd edn. APHA/AWWA/WEF, Washington, D.C.

    Google Scholar 

  • Araújo Dos Santos L, Ferreira V, Pereira MO, Nicolau A (2014) Relationship between protozoan and metazoan communities and operation and performance parameters in a textile sewage activated sludge system. Eur J Protistol 50(4):319–328

    PubMed  Google Scholar 

  • Baranyi C, Hein T, Holarek C, Keckeis S, Schiemer F (2002) Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshw Biol 47:473–482

    Google Scholar 

  • Bass JAB, Pinder LCV, Leach DV (1997) Temporal and spatial variation in zooplankton populations in the River Great Ouse: an ephemeral food resource for larval and juvenile fish. Regul Rivers Res Manag 13:245–258

    Google Scholar 

  • Bazzuri ME, Gabellone NA, Solari LC (2018) The effects of hydraulic works and wetlands function in the Salado-River basin (Buenos Aires, Argentina). Environ Monit Assess. https://doi.org/10.1007/s10661-017-6448-7

    Article  PubMed  Google Scholar 

  • Biggs J, Von Fumetti S, Kelly-Quinn M (2017) The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793(1):3–39

    Google Scholar 

  • Burdis RM, Hoxmeier RJH (2011) Seasonal zooplankton dynamics in main channel and backwater habitats of the Upper Mississippi River. Hydrobiologia 667:69–87

    Google Scholar 

  • Casper AF, Thorp JH (2007) Diel and lateral patterns of zooplankton distribution in the St. Lawrence River River Res Appl 23:73–85

    Google Scholar 

  • Chaparro G, Marinone MC, Lombardo RJ, Schiaffino MR, De Souza GA, O’Farrell I (2011) Zooplankton succession during extraordinary drought–flood cycles: a case study in a South American floodplain lake. Limnologica 41(4):371–381

    Google Scholar 

  • Chaparro G, O'Farrell I, Hein T (2019) Multi-scale analysis of functional plankton diversity in floodplain wetlands: effects of river regulation. Sci Total Environ 667:338–347

    CAS  PubMed  Google Scholar 

  • Claps MC, Gabellone NA, Neschuk NC (2009) Influence of regional factors on zooplankton structure in a saline lowland river: the Salado River (Buenos Aires, Argentina). River Res Appl 24:1–19

    Google Scholar 

  • Clarke KR, Gorley RN (2001) Primer V.5 User Tutorial Manual Primer E Limited

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    CAS  Google Scholar 

  • Czerniawski R, Pilecka-Rapacz M, Domagała J (2013) Zooplankton communities of inter-connected sections of lower River Oder (NW Poland). Open Life Sci 8:18–29

    Google Scholar 

  • Echaniz SA, Vignatti AM (2011) Seasonal variation and influence of turbidity and salinity on the zooplankton of a saline lake in central Argentina. Latin Am J Aquat Res 39:306–315

    Google Scholar 

  • Echaniz SA, Vignatti AM, José de Paggi S, Paggi JC (2005) Riqueza y composición del zooplancton de lagunas saladas de la región pampeana argentina. Revista FABICIB 9:25–39

    Google Scholar 

  • Foissner W (2016) Protists as bioindicators in activated sludge: Identification, ecology and future needs. Eur J Protistol 55:75–94

    PubMed  Google Scholar 

  • Foissner W, Berger H (1996) A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw Biol 35(2):375–482

    Google Scholar 

  • Foissner W, Berger H, Schaumbeurg J (1999) Identification and ecology of limnetic plankton ciliates. Bavarian State Office for Water Management, Munich

    Google Scholar 

  • Forte Lay JA, Kruse E, Aiello JL (2007) Hydrologic scenarios applied to the agricultural management of the northwest of the Buenos Aires Province, Argentina. GeoJ 70:263–271

    Google Scholar 

  • Furst DJ, Aldridge KT, Shiel RJ, Ganf GG, Mills S, Brookes JD (2014) Floodplain connectivity facilitates significant export of zooplankton to the main River Murray channel during a flood event. Inland Waters 4(4):413–424

    Google Scholar 

  • Gabellone NA, Claps MC, Ardohain DM, Dippolitto A, Bazzuri ME, Solari LC (2014) Relationship between the zoo- and phytoplankton biomasses in a saline lowland river (Argentina): a short-time-scale analysis. Fundam Appl Limnol 184:307–327

    CAS  Google Scholar 

  • Ghadouani A, Alloul BP, Zhang Y, Prepas EE (1998) Relationships between zooplankton community structure and phytoplankton in two lime-treated eutrophic hardwater lakes. Freshw Biol 37:775–790

    Google Scholar 

  • Ghersa CM, Ferraro DO, Omacini M, Martınez-Ghersa MA, Perelman S, Satorre EH, Soriano A (2002) Farm and landscape level variables as indicators of sustainable land-use in the Argentine Inland-Pampa. Agric Ecosyst Environ J 93:279–293

    Google Scholar 

  • Gonzalez MH, Fernandez AE (2007) Floods increasing in Buenos Aires Salado River basin, Argentina. In: Scarpati O, Jones A (eds) Environmental change and rational water use. Orientación Gráfica Editora. Buenos Aires, Argentina, pp 96–113

    Google Scholar 

  • Górski K, Collier KJ, Duggan IC, Taylor CM, Hamilton DP (2013) Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system. Freshw Biol 58(7):1458–1470

    Google Scholar 

  • Haney JF, Hall DJ (1972) Sugar-coated Daphnia: a preservation technique for Cladocera. Limnol Oceanogr 23:331–333

    Google Scholar 

  • Hillbricht-Ilkowska A (1999) Shallow lakes in lowland river systems: role in transport and transformations of nutrients and in biological diversity. Hydrobiologia 408:349–358

    Google Scholar 

  • Holst H, Zimmermann-Timm H, Kausch H (2002) Longitudinal and transverse distribution of plankton rotifers in the potamal of the River Elbe (Germany) during late summer. Int Rev Hydrobiol 87:267–280

    Google Scholar 

  • Iriondo M, Kröhling D (2007) Geomorfología y sedimentología de la cuenca superior del río Salado (Sur de Santa Fe y Noroeste de Buenos Aires, Argentina). Lat Am J Sedimentol Basin Anal 14:1–23

    Google Scholar 

  • José de Paggi S, Paggi JC (1998) Zooplancton de ambientes acuáticos con diferente estado trófico y salinidad. Neotrópica 44:95–106

    Google Scholar 

  • José de Paggi S, Paggi JC (2007) Zooplankton. In: Iriondo MH, Paggi JC, Parma MJ (eds) The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Berlin, pp 229–249

    Google Scholar 

  • José de Paggi SBJ, Devercelli M (2011) Land use and basin characteristics determine the composition and abundance of the microzooplankton. Water Air Soil Pollut 218:93–108

    Google Scholar 

  • José de Paggi SBJ, Devercelli M, Molina FR (2014) Zooplankton and their driving factors in a large subtropical river during low water periods. Fundam Appl Limnol/Arch Hydrobiol 184(2):125–139

    Google Scholar 

  • Kim DK, Jeong KS, Chang KH, La GH, Joo GJ, Kim HW (2012) Patterning zooplankton communities in accordance with annual climatic conditions in a regulated river system (Nakdong River, South Korea). Int Rev Hydrobiol 97:55–72

    Google Scholar 

  • Kiss ÁK, Ács É, Kiss KT, Török JK (2009) Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur J Protistol 45:121–138

    PubMed  Google Scholar 

  • Kobayashi T, Shiel RJ, Gibbs P (1998) Size structure of river zooplankton: seasonal variation, overall pattern and functional aspect. Mar Freshw Res 49:547–552

    Google Scholar 

  • Lair N (2006) A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Res Appl 22:567–593

    Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48:1161–1172

    Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    PubMed  Google Scholar 

  • Lehman JT (1988) Selective herbivory and its role in the evolution of phytoplankton growth strategies. In Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press

  • Ludueña SG (2006) Farm-scale pounding susceptibility for potential land reclamation assessment in large flatlands. A case study in the Salado River Basin, Province of Buenos Aires, Argentina. Thesis for the degree of: Master of Science in Geo-information Science and Earth Observation. Integrated Catchment and Water Resourses Management. ITC, International Institute for Geo-information Science and Earth Observation, Eschede, The Netherlands

  • Marneffe Y, Descy JP, Thomé JP (1996) The zooplankton of the lower river Meuse, Belgium: seasonal changes and impact of industrial and municipal discharges. Hydrobiologia 319:1–13

    CAS  Google Scholar 

  • Neschuk NC, Gabellone NA, Solari L (2002) Plankton characterization of a lowland river (Salado River, Argentina). Ver Inter Ver Limnol 28:1336–1339

    Google Scholar 

  • Ning NS, Gawne B, Cook RA, Nielsen DL (2013) Zooplankton dynamics in response to the transition from drought to flooding in four Murray-Darling Basin rivers affected by differing levels of flow regulation. Hydrobiologia 702(1):45–62

    Google Scholar 

  • Pace ML, Findlay SE, Lints D (1992) Zooplankton in advective environments: the Hudson River community and a comparative analysis. Can J Fish Aquat Sci 49(5):1060–1069

    Google Scholar 

  • Palmer J, Suter SN, Aradas RD (2002) The Río Salado Basin in Argentina: an integrated Master Plan. Water Environ J 16:141–146

    Google Scholar 

  • Pauleto GM, Velho LFM, Buosi PRB, Brão AFS, Lansac-Tôha FA, Bonecker CC (2009) Spatial and temporal patterns of ciliate species composition (Protozoa: Ciliophora) in the plankton of the Upper Paraná River floodplain. Braz J Biol 69(2):517–527

    CAS  PubMed  Google Scholar 

  • Picard V, Lair N (2005) Spatio-temporal investigations on the planktonic organisms of the Middle Loire (France), during the low water period: biodiversity and community dynamics. Hydrobiologia 551:69–86

    Google Scholar 

  • Pourriot R, Rougier C, Miquelis A (1997) Origin and development of river zooplankton: example of the Marne. Hydrobiologia 345:143–148

    Google Scholar 

  • Reckendorfer W, Keckeis H, Winkler G, Schiemer F (1999) Zooplankton abundance in the river Danube, Austria: the significance of inshore retention. Freshw Biol 41:583–591

    Google Scholar 

  • Rossetti G, Viaroli P, Ferrari I (2009) Role of abiotic and biotic factors in structuring the metazoan plankton community in a lowland river. River Res Appl 25:814–835

    Google Scholar 

  • Saunders JF III, Lewis WM Jr (1989) Zooplankton abundance in the lower Orinoco River, Venezuela. Limnol Oceanogr 34:397–409

    Google Scholar 

  • Scherwass A, Arndt H (2005) Structure, dynamics and control of the ciliate fauna in the potamoplancton of the River Rhine. Arch Hydrobiol 164:287–307

    Google Scholar 

  • Scherwass A, Bergfeld T, Schöl A, Weitere M, Arndt H (2010) Changes in the plankton community along the length of the River Rhine: Lagrangian sampling during a spring situation. J Plankton Res 32:491–502

    Google Scholar 

  • Schöll K, Kiss A, Dinka M, Berczik Á (2012) Flood-pulse effects on zooplankton assemblages in a river-floodplain system (Gemenc floodplain of the Danube, Hungary). Int Rev Hydrobiol 97(1):41–54

    Google Scholar 

  • Schröder T (2001) Colonising strategies and diapause of planktonic rotifers (Monogononta, Rotifera) during aquatic and terrestrial phases in a floodplain (Lower Oder Valley, Germany). Int Rev Hydrobiol 86:635–660

    Google Scholar 

  • Segers H (1995) Rotifera: the Lecanidae (Monogononta). In: Dumont (Ed.). Guides to the identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing, The Hague

    Google Scholar 

  • Shiel RJ, Costelloe JF, Reid JR, Hudson P, Powling J (2006) Zooplankton diversity and assemblages in arid zone rivers of the Lake Eyre Basin, Australia. Mar Freshw Res 57:49–60

    Google Scholar 

  • Shiel RJ, Walker KF, Williams WD (1982) Plankton of the lower River Murray, South Australia. Aust J Mar Freshw Res 33:301–327

    Google Scholar 

  • Silva WM (2008) Diversity and distribution of the free-living freshwater Cyclopoida (Copepoda: Crustacea) in the Neotropics. Braz J Biol 68:1099–1106

    CAS  PubMed  Google Scholar 

  • Simões NR, Lansac-Tôha FA, Bonecker CC (2013) Drought disturbances increase temporal variability of zooplankton community structure in floodplains. Int Rev Hydrobiol 98:24–33

    Google Scholar 

  • Sluss TD, Cobbs GA, Thorp JH (2008) Impact of turbulence on riverine zooplankton: a mesocosm experiment. Freshw Biol 53:1999–2010

    Google Scholar 

  • Ter Braak CJF, Smilauer P (1998) Canoco reference manual and Canoco Draw for Windows user’s guide: software for canonical community ordination (Version 4.5). Microcomputer Power (Ithaca, NY, USA)

  • Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579(1):1–13

    Google Scholar 

  • Vadadi-Fülöp C, Hufnagel L, Jablonszky G, Zsuga K (2009) Crustacean plankton abundance in the Danube River and in its side arms in Hungary. Biologia 64:1184–1195

    Google Scholar 

  • Vásquez E, Rey J (1989) A longitudinal study of zooplankton along the Lower Orinoco River and its Delta (Venezuela). Annls Limnol 25:107–120

    Google Scholar 

  • Viroux L (1997) Zooplankton development in two large lowland rivers, the Moselle (France) and the Meuse (Belgium), in 1993. J Plankton Res 19:1743–1762

    Google Scholar 

  • Wahl DH, Goodrich J, Nannini MA, Dettmers JM, Soluk DA (2008) Exploring riverine zooplankton in three habitats of the Illinois River ecosystem: Where do they come from? Limnol Oceanogr 53:2583–2593

    Google Scholar 

  • Walks DJ (2007) Persistence of plankton in flowing water. Can J Fish Aquat Sci 64:1693–1702

    Google Scholar 

  • Walks DJ, Cyr H (2004) Movement of plankton through lake-stream systems. Freshw Biol 49:745–759

    Google Scholar 

  • Ward JV, Stanford JA (1995) The serial discontinuity concept: extending the model to floodplain rivers. Regul Rivers Res Manag 10:159–168

    Google Scholar 

  • Ward JV, Tockner K, Schiemer F (1999) Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regul Rivers Res Manag 15:125–139

    Google Scholar 

  • Weisse T (2002) The significance of inter-and intraspecific variation in bacterivorous and herbivorous protists. Antonie Van Leeuwenhoek 81:327–341

    PubMed  Google Scholar 

  • Withers PJA, Jarvie HP (2008) Delivery and cycling of phosphorus in rivers: A review. Sci Total Environ 400:379–395

    CAS  PubMed  Google Scholar 

  • Zimmermann-Timm H, Holst H, Kausch H (2007) Spatial dynamics of rotifers in a large lowland river, the Elbe, Germany: How important are retentive shoreline habitats for the plankton community? Hydrobiologia 593:49–58

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Juan Carlos Paggi for daphnids identification, to Dr. Analía Díaz for ostracods identification, and to Dr. Hernán Benítez for assistance in the laboratory procedures. We appreciate the anonymous reviewers’ comments on the manuscript. This research was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina), and constitutes Scientific Contribution No. 1162 of the Institute of Limnology Dr. Raúl A. Ringuelet (ILPLA, CCT La Plata CONICET, UNLP). Dr. María Elisa Bazzuri holds a fellowship from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina). Dr. Donald F. Haggerty, a retired academic career investigator and native English speaker, edited the final version of the manuscript.

Funding

Funding was provided by Agencia Nacional de Promoción Científica y Tecnológica (Grant No. 5612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Bazzuri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazzuri, M.E., Gabellone, N.A. & Solari, L.C. Zooplankton-population dynamics in the Salado-River basin (Buenos Aires, Argentina) in relation to hydraulic works and resulting wetland function. Aquat Sci 82, 48 (2020). https://doi.org/10.1007/s00027-020-00720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-020-00720-4

Keywords

Navigation