Skip to main content
Log in

A Modified RLS Algorithm for ICA with Weighted Orthogonal Constraint

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Independent component analysis (ICA), as an important data processing technique, is widely employed in many areas. The objective of the ICA is to recover independent components from observed signals. Several algorithms, such as equivariant adaptive separation via independence algorithm, least-mean-square (LMS)-type algorithms and recursive least-squares (RLS)-type learning rules, are proposed to solve the ICA problem. In the present paper, a modified RLS algorithm for ICA with weighted orthogonal constraint is developed to implement source separation based on the local convergence analysis of the available algorithm. Comparative experiment results demonstrate that the proposed algorithm is better than existing learning rules in the aspect of the accuracy of separation and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.I. Amari, Neural learning in structured parameter spaces natural Riemannian gradient, in Advances in Neural Information Processing Systems, vol. 9, ed. by M.C. Mozer, M.I. Jordan, T. Petsche (The MIT Press, Cambridge, 1997), pp. 127–133

    Google Scholar 

  2. S.I. Amari, J. Cardoso, Blind source separation-semiparametric statistical approach. IEEE Trans. Signal Process. 45(11), 2692–2700 (1997)

    Article  Google Scholar 

  3. A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  4. J.F. Cardoso, B.H. Laheld, Equivariant adaptive source separation. IEEE Trans. Signal Process. 44(12), 3017–3030 (1996)

    Article  Google Scholar 

  5. P. Comon, Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  6. E. Eleftheriou, D.D. Falconer, Tracking properties and steady-state performance of RLS adaptive filter algorithms. IEEE Trans. Acoust. Speech Signal Process 34(5), 1097–1110 (1986)

    Article  Google Scholar 

  7. L.F. Egeren, Multivariate statistical analysis: revised and expanded. Psychophysiology 10(5), 517–532 (1973)

    Article  Google Scholar 

  8. S. Haykin, Simon, Unsupervised Adaptive Filtering (Wiley, New York, 2000)

    Google Scholar 

  9. A. Hyvärinen, E. Oja, A fast fixed-point algorithms for independent component analysis. Neural Comput. 9(7), 1483–1492 (1997)

    Article  Google Scholar 

  10. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001)

    Book  Google Scholar 

  11. E. Jianwei, Y.L. Bao, J.M. Ye, Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis. Physica A 484, 412–427 (2017)

    Article  Google Scholar 

  12. H. Jung, J. Kang, T.S. Lee, S. Kim, K. Kim, An iALM-ICA-based anti-jamming DS-CDMA receiver for LMS systems. IEEE Trans. Aerosp. Electron. Syst. 54(5), 2318–2328 (2018)

    Article  Google Scholar 

  13. I. Rejer, P. Gérski, Independent component analysis for EEG data preprocessing-algorithms comparison. SIAM J. Math. Anal. 44(2), 1134–1164 (2017)

    Google Scholar 

  14. M.S. Reza, J. Ma, ICA and PCA integrated feature extraction for classification, in IEEE International Conference on Signal Processing (2017)

  15. A. Singhal, I. Google, Modern information retrieval: a brief overview. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 24(24), 35–43 (2001)

    Google Scholar 

  16. Q. Su, Y.M. Wei, Y.H. Shen, C.L. Deng, Underdetermined independent component analysis based on first- and second-order statistics. Circuits Syst. Signal Process. 38(7), 3107–3132 (2019)

    Article  Google Scholar 

  17. Y. Tang, Independent component analysis employing exponentials of sparse antisymmetric matrices. Neurocomputing 325, 172–181 (2019)

    Article  Google Scholar 

  18. X.J. Tang, J.M. Ye, X.F. Zhang, On the convergence of ICA algorithms with weighted orthogonal constraint. Digit. Signal Process. 28(1), 39–47 (2014)

    MathSciNet  Google Scholar 

  19. X.J. Tang, X.F. Zhang, J.M. Ye, Adaptive step-size natural gradient ICA algorithm with weighted orthogonalization. Circuits Syst. Signal Process. 33(1), 211–221 (2014)

    Article  Google Scholar 

  20. L. Xu, Least mean square error reconstruction principle for self-organizing neural-nets. Neural Netw. 6(5), 627–648 (1993)

    Article  Google Scholar 

  21. B. Yang, Projection approximation subspace tracking. IEEE Trans. Signal Process. 43(1), 95–107 (2002)

    Article  Google Scholar 

  22. C.X. Yang, N. Tavassolian, An independent component analysis approach to motion noise cancellation of cardio-mechanical signals. IEEE Trans. Biomed. Eng. 66(3), 784–793 (2019)

    Article  Google Scholar 

  23. J.M. Ye, H.H. Jin, Q.R. Zhang, Adaptive weighted orthogonal constrained algorithm for blind source separation. Digit. Signal Process. 23(2), 514–521 (2013)

    Article  MathSciNet  Google Scholar 

  24. X.L. Zhu, X.D. Zhang, Adaptive RLS algorithm for blind source separation using a natural gradient. IEEE Signal Process. Lett. 9(12), 432–435 (2002)

    Article  Google Scholar 

  25. X.L. Zhu, X.D. Zhang, J.M. Ye, Natural gradient-based recursive least-squares algorithm for adaptive blind source separation. Sci. China Ser. F: Inf. Sci. 47(1), 55–65 (2004)

    MathSciNet  MATH  Google Scholar 

  26. X.L. Zhu, X.D. Zhang, Z.Z. Ding, Y. Jia, Adaptive nonlinear PCA algorithms for blind source separation without prewhitening. IEEE Trans. Circuits Syst. I Regul. Pap. 53(3), 745–753 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Zhu, S.N. Zhang, H.C. Zhao, Single-channel source separation of multi-component radar signal with the same generalized period using ICA. Circuits Syst. Signal Process. 35(1), 353–363 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61573014 and in part by the Fundamental Research Funds for the Central Universities of China under Grant JB180702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimin Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Theorem 1

Appendix A: Proof of Theorem 1

Considering formulation (11), Tang [18] pointed out that the \({\mathbf {B}}_{\mathrm{opt},t}\) at time t is the stable point with the weighted orthogonal constraint (3). When iteration (11) converges, considering the following expression in (10)

$$\begin{aligned} {\mathbf {P}}_{t}=(\lambda {\mathbf {P}}^{-1}_{t-1}+{\mathbf {z}}_{t}{\mathbf {z}}^\mathrm{T}_{t})^{-1} \end{aligned}$$
(23)

applying \(E\{\cdot \}\) operator to (23), we can obtain that

$$\begin{aligned} {\mathbf {P}}_{\mathrm{opt},t}=(1-\lambda )E\{{\mathbf {z}}_{t}{\mathbf {z}}^\mathrm{T}_{t}\}^{-1} \end{aligned}$$
(24)

Utilizing the (24) to the \({\mathbf {P}}_{t}\) in (11) yields

$$\begin{aligned} \lim _{t\rightarrow \infty }E\{{\mathbf {Q}}_{t}{\mathbf {z}}_{t}{\mathbf {z}}^\mathrm{T}_{t}\} =E\{{\mathbf {I}}-\lambda {\mathbf {I}}\} \end{aligned}$$
(25)

Combining result (25) with mathematical expectation on two sides of the final time of (11), we have the following as:

$$\begin{aligned} \lim _{t\rightarrow \infty }\frac{E\{{\mathbf {B}}_{t}-{\mathbf {B}}_{\mathrm{opt},t}\}}{E\{{\mathbf {B}}_{t-1}-{\mathbf {B}}_{\mathrm{opt},t}\}}=\lambda \end{aligned}$$
(26)

here \(\lambda \) is the forgetting factor \((0\ll \lambda <1)\). It represents that our algorithm is linear convergence. Further, (9) demonstrates that \(E\{{\mathbf {z}}_{t}{\mathbf {z}}^\mathrm{T}_{t}\}=E\{{\mathbf {y}}_{t}{\mathbf {z}}^\mathrm{T}_{t}\}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

E, J., Ye, J. A Modified RLS Algorithm for ICA with Weighted Orthogonal Constraint. Circuits Syst Signal Process 39, 3046–3060 (2020). https://doi.org/10.1007/s00034-019-01303-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01303-x

Keywords

Navigation