Skip to main content
Log in

Design and Implementation of an Optimized Artificial Human Eardrum Model

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces a fractional-order eardrum Type-II model, which is derived using fractional calculus to reduce the number of elements compared to its integer-order counterpart. The proposed fractional-order model parameters are extracted and compared using five meta-heuristic optimization techniques. The CMOS implementation of the model is performed using the Design Kit of the Austria Mikro Systeme (AMS) 0.35 \(\upmu {\hbox {m}}\) CMOS process, while the simulations have been performed using the Cadence IC design suite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Bertsias, C. Psychalinos, B.J. Maundy, A.S. Elwakil, A.G. Radwan, Partial fraction expansion-based realizations of fractional-order differentiators and integrators using active filters. Int. J. Circuit Theory Appl. 47(4), 513–531 (2019)

    Article  Google Scholar 

  2. X. Chen, Y. Chen, B. Zhang, D. Qiu, A modeling and analysis method for fractional-order DC–DC converters. IEEE Trans. Power Electron. 32(9), 7034–7044 (2016)

    Article  Google Scholar 

  3. S.A. David, R.V. de Sousa, C.A. Valentim Jr., R.A. Tabile, J.A.T. Machado, Fractional PID controller in an active image stabilization system for mitigating vibration effects in agricultural tractors. Comput. Electron. Agric. 131, 1–9 (2016)

    Article  Google Scholar 

  4. M. Fouda, A. Elwakil, A. Radwan, A. Allagui, Power and energy analysis of fractional-order electrical energy storage devices. Energy 111, 785–792 (2016)

    Article  Google Scholar 

  5. J. Gálvez, E. Cuevas, O. Avalos, Flower pollination algorithm for multimodal optimization. Int. J. Comput. Intell. Syst. 10(1), 627–646 (2017)

    Article  Google Scholar 

  6. E.M. Hamed, A.M. AbdelAty, L.A. Said, A.G. Radwan, Effect of different approximation techniques on fractional-order KHN filter design. Circuits Syst. Signal Process. 37, 5222–5252 (2018)

    Article  Google Scholar 

  7. International Electrotechnical Commission (IEC), Electroacoustics-Simulators of Human Head and Ear-Part 4: Occluded Ear Simulator for the Measurement of Earphones Couples to the Ear by Means of Ear Inserts (Geneva, Switzerland, 1998)

  8. H.-L. Li, J. Cao, H. Jiang, A. Alsaedi, Graph theory-based finite-time synchronization of fractional-order complex dynamical networks. J. Franklin Inst. 355(13), 5771–5789 (2018)

    Article  MathSciNet  Google Scholar 

  9. J.T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MathSciNet  Google Scholar 

  10. S. Majumdar, S. Hazra, M.D. Choudhury, S.D. Sinha, S. Das, T.R. Middya, S. Tarafdar, T. Dutta, A study of the rheological properties of visco-elastic materials using fractional calculus. Colloids Surf. A 516, 181–189 (2017)

    Article  Google Scholar 

  11. S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  12. S. Mirjalili, A. Lewis, The Whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  13. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  14. D. Naranjo-Hernández, J. Reina-Tosina, M. Min, Fundamentals, recent advances, and future challenges in bioimpedance devices for healthcare applications. J. Sens. 2019, 1–42 (2019). https://doi.org/10.1155/2019/9210258

    Article  Google Scholar 

  15. L. Nielsen, A. Schuhmacher, B. Liu, S. Jonsson, Simulation of the IEC 60711 occluded ear simulator, in Audio Engineering Society Convention 116. Audio Engineering Society (2004)

  16. S. Poschen, F. Kettler, A. Raake, S. Spors, Wideband Echo Perception (IWAENC, Seattle, 2008)

    Google Scholar 

  17. A. Razminia, M. Asadizadehshiraz, H.R. Shaker, Optimal trajectory tracking solution: fractional order viewpoint. J. Franklin Inst. 356(3), 1590–1603 (2019)

    Article  MathSciNet  Google Scholar 

  18. S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)

    Article  Google Scholar 

  19. M. Sasajima, T. Yamaguchi, M. Watanabe, Y. Koike, FEM analysis of occluded ear simulator with narrow slit pathway. Int. J. Mech. Aerosp. Ind. Mech. Manuf. Eng. 9(9), 1430–1433 (2015)

    Google Scholar 

  20. N. Sirdeshpande, V. Udupi, Fractional lion optimization for cluster head-based routing protocol in wireless sensor network. J. Franklin Inst. 354(11), 4457–4480 (2017)

    Article  MathSciNet  Google Scholar 

  21. D. Su, W. Bao, J. Liu, C. Gong, An efficient simulation of the fractional chaotic system and its synchronization. J. Frankl. Inst. 355(18), 9072–9084 (2018). (Special issue on control and signal processing in mechatronic systems)

    Article  MathSciNet  Google Scholar 

  22. M.F. Tolba, B.M. AboAlNaga, L.A. Said, A.H. Madian, A.G. Radwan, Fractional order integrator/differentiator: FPGA implementation and FOPID controller application. AEU Int. J. Electron. Commun. 98, 220–229 (2019)

    Article  Google Scholar 

  23. M.F. Tolba, L.A. Said, A.H. Madian, A.G. Radwan, Fpga implementation of the fractional order integrator/differentiator: two approaches and applications. IEEE Trans. Circuits Syst. I Regul. Pap. 66(4), 1484–1495 (2018)

    Article  MathSciNet  Google Scholar 

  24. C. Vastarouchas, C. Psychalinos, A. S. Elwakil, Fractional-order model of a commercial ear simulator, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2018), pp. 1–4

  25. C. Vastarouchas, G. Tsirimokou, T.J. Freeborn, C. Psychalinos, Emulation of an electrical-analogue of a fractional-order human respiratory mechanical impedance model using OTA topologies. AEU Int. J. Electron. Commun. 78, 201–208 (2017)

    Article  Google Scholar 

  26. D. Yousri, A.M. AbdelAty, L.A. Said, A. AboBakr, A.G. Radwan, Biological inspired optimization algorithms for cole-impedance parameters identification. AEU Int. J. Electron. Commun. 78, 79–89 (2017)

    Article  Google Scholar 

  27. D. Yousri, A.M. AbdelAty, L.A. Said, A.S. Elwakil, B. Maundy, A.G. Radwan, Chaotic flower pollination and grey wolf algorithms for parameter extraction of bio-impedance models. Appl. Soft Comput. 75, 750–774 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobna A. Said.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI). This article is based upon work from COST Action CA15225, a network supported by COST (European Cooperation in Science and Technology).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertsias, P., Mohsen, M., Said, L.A. et al. Design and Implementation of an Optimized Artificial Human Eardrum Model. Circuits Syst Signal Process 39, 3219–3233 (2020). https://doi.org/10.1007/s00034-019-01308-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01308-6

Keywords

Navigation