Skip to main content
Log in

Relative pollen productivity estimates of major plant taxa and relevant source area of pollen in the warm-temperate forest landscape of northern China

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Relative pollen productivity (RPP) is critical for quantitative vegetation reconstruction of past vegetation cover. The Extended R-value (ERV) model is commonly used for estimating RPP. In this study, we used modern pollen assemblages from 30 randomly selected surface sample sites, and these and vegetation data were applied to an ERV model to estimate pollen productivity of Pinus, Quercus, Corylus, Artemisia, Chenopodiaceae, Asteraceae and Caryophyllaceae relative to Poaceae. Estimates of the relevant source area of pollen (RSAP) was also obtained. Three different ERV sub-models were operated against the data. Sub-model 1 produced the best goodness of fit for the data and the RPP values estimated with this sub-model show that the highest producer among arboreal pollen taxa is Pinus (12.85 ± 1.26) and among the herb pollen taxa is Caryophyllaceae (7.28 ± 0.14). The results of ERV analysis suggest that RSAP in surface samples is ca. 400 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Broström A, Sugita S, Gaillard M-J (2004) Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of Southern Sweden. Holocene 14:368–381

    Article  Google Scholar 

  • Broström A, Sugita S, Gaillard M-J, Pilesjö P (2005) Estimating the spatial scale of pollen dispersal in the cultural landscape of southern Sweden. Holocene 15:252–262

    Article  Google Scholar 

  • Broström A, Nielsen AB, Gaillard M-J et al (2008) Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review. Veget Hist Archaeobot 17:461–478. https://doi.org/10.1007/s00334-008-0148-8

    Article  Google Scholar 

  • Bunting MJ, Gaillard MJ, Sugita S, Middleton R, Broström A (2004) Vegetation structure and pollen source area. Holocene 14:651–660

    Article  Google Scholar 

  • Bunting MJ, Armitage R, Binney HA, Waller M (2005) Estimates of ‘relative pollen productivity’ and ‘relevant source area of pollen’ for major tree taxa in two Norfolk (UK) woodlands. Holocene 15:459–465

    Article  Google Scholar 

  • Bunting MJ, Farrell M, Broström A et al (2013) Palynological perspectives on vegetation survey: a critical step for model-based reconstruction of Quaternary land cover. Quat Sci Rev 82:41–55

    Article  Google Scholar 

  • Bunting MJ, Grant MJ, Waller M (2016) Approaches to quantitative reconstruction of woody vegetation in managed woodlands from pollen records. Rev Palaeobot Palynol 225:53–66

    Article  Google Scholar 

  • Calcote R (1995) Pollen source area and pollen productivity: evidence from forest hollows. J Ecol 83:591–602

    Article  Google Scholar 

  • Chaput MA, Gajewski K (2018) Relative pollen productivity estimates and changes in Holocene vegetation cover in the deciduous forest of southeastern Quebec, Canada. Botany 96:299–317

    Article  Google Scholar 

  • Duffin KI, Bunting MJ (2008) Relative pollen productivity and fall speed estimates for southern African savanna taxa. Veget Hist Archaeobot 17:507–525. https://doi.org/10.1007/s00334-007-0101-2

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Which plant? Identification keys for the northwest European pollen flora. In: Faegri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Fagerlind F (1952) The real significance of pollen diagrams. Bot Notiser 105:185–224

    Google Scholar 

  • Gaillard M-J, Sugita S, Bunting MJ et al (2008) The use of modelling and simulation approach in reconstructing past landscapes from fossil pollen data: a review and results from the POLLANDCAL network. Veget Hist Archaeobot 17:419–443. https://doi.org/10.1007/s00334-008-0169-3

    Article  Google Scholar 

  • Ge YW, Li YC, Li Y, Yang XL, Zhang RC, Xu QH (2015) Relevant source area of pollen and relative pollen productivity estimates in the Bashang steppe. Quat Sci 35:934–945

    Google Scholar 

  • Ge YW, Li YC, Bunting MJ, Li B, Li ZT, Wang JT (2017) Relation between modern pollen rain, vegetation and climate in northern China: implications for quantitative vegetation reconstruction in a steppe environment. Sci Total Environ 586:25–41

    Article  Google Scholar 

  • Gregory PH (1973) The microbiology of the atmosphere. Leonard Hill, London

    Google Scholar 

  • Grindean R, Nielsen AB, Tanţău I, Feurdean A (2019) Relative pollen productivity estimates in the forest steppe landscape of southeastern Romania. Rev Palaeobot Palynol 264:54–63

    Article  Google Scholar 

  • Han Y, Liu HY, Hao Q, Liu X, Guo WC, Shangguan HL (2017) More reliable pollen productivity estimates and relative source area of pollen in a forest-steppe ecotone with improved vegetation survey. Holocene 27:1567–1577

    Article  Google Scholar 

  • Hellman S, Gaillard M-J, Bunting MJ, Mazier F (2009) Estimating the Relevant source area of pollen in the past cultural landscapes of southern Sweden—a forward modelling approach. Rev Palaeobot Palynol 153:259–271

    Article  Google Scholar 

  • Hjelle KL (1998) Herb pollen representation in surface moss samples from mown meadows and pastures in western Norway. Veget Hist Archaeobot 7:79–96. https://doi.org/10.1007/BF01373926

    Article  Google Scholar 

  • Jantz N, Homeier J, León-Yánez S, Moscoso A, Behling H (2013) Trapping pollen in the tropics—comparing modern pollen rain spectra of different pollen traps and surface samples across Andean vegetation zones. Rev Palaeobot Palynol 193:57–69

    Article  Google Scholar 

  • Lacourse T, May L (2012) Increasing taxonomic resolution in pollen identification: Sample size, spatial sampling bias and implications for palaeoecology. Rev Palaeobot Palynol 182:55–64

    Article  Google Scholar 

  • Li YC, Bunting MJ, Xu QH, Jiang SX, Ding W, Hun LY (2011) Pollen-vegetation-climate relationships in some desert and desert-steppe communities in northern China. Holocene 21(997–1):010

    Google Scholar 

  • Li YY, Nielsen AB, Zhao XQ, Shan LJ, Wang SZ, Wu J, Zhou LP (2015) Pollen production estimates (PPEs) and fall speeds for major tree taxa and relevant source areas of pollen (RSAP) in Changbai Mountain, northeastern China. Rev Palaeobot Palynol 216:92–100

    Article  Google Scholar 

  • Li FR, Gaillard M-J, Sugita SD et al (2017a) Relative pollen productivity estimates for major plant taxa of cultural landscapes in central eastern China. Veget Hist Archaeobot 26:587–605. https://doi.org/10.1007/s00334-017-0636-9

    Article  Google Scholar 

  • Li YC, Ge YW, Bunting MJ et al (2017b) Relative pollen productivities and relevant source area of pollen in the forest-steppe ecotone of northern China. Rev Palaeobot Palynol 244:1–12

    Article  Google Scholar 

  • Li FR, Gaillard M-J, Sugita S et al (2018) A review of relative pollen productivity estimates from temperate China for pollen-based quantitative reconstruction of past plant cover. Front Plant Sci 9:1214. https://doi.org/10.3389/fpls.2018.01214

    Article  Google Scholar 

  • Mazier F, Broström A, Gaillard M-J, Sugita S, Vittoz P, Buttler A (2008) Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland). Veget Hist Archaeobot 17:479–495. https://doi.org/10.1007/s00334-008-0143-0

    Article  Google Scholar 

  • Mu HS (2016) Relevant source area of pollen and relative pollen productivities in Changbai Mountains and Taiyue Mountains. Master Thesis of College of Resources and Environment Sciences, Hebei Normal University, Shijiazhuang

  • Nielsen AB, Odgaard BV (2005) Reconstructing land cover from pollen assemblages from small lakes in Denmark. Rev Palaeobot Palynol 133:1–21

    Article  Google Scholar 

  • Nielsen AB, Sugita S (2005) Estimating relevant source area of pollen for small Danish lakes around AD 1800. Holocene 15:1006–1020

    Article  Google Scholar 

  • Parsons RW, Prentice IC (1981) Statistical approaches to R-values and the pollen–vegetation relationship. Rev Palaeobot Palynol 32:127–152

    Article  Google Scholar 

  • Poska A, Sepp E, Veski S, Koppel K (2008) Using quantitative pollen-based land-cover estimations and a spatial CA_Markov model to reconstruct the development of cultural landscape at Rõuge, South Estonia. Veget Hist Archaeobot 17:527–541. https://doi.org/10.1007/s00334-007-0124-8

    Article  Google Scholar 

  • Poska A, Meltsov V, Sugita S, Vassiljev J (2011) Relative pollen productivity estimates of major anemophilous taxa and relevant source area of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia). Rev Palaeobot Palynol 167:30–39

    Article  Google Scholar 

  • Prentice IC (1985) Pollen representation, source area, and basin size: Toward a unified theory of pollen analysis. Quat Res 23:76–86

    Article  Google Scholar 

  • Prentice IC, Parsons RW (1983) Maximum likelihood linear calibration of pollen spectra in terms of forest composition. Biometrics 39:1051–1057

    Article  Google Scholar 

  • Qinhuangdao Local Chronicles Compilation Committee (1994) Qinhuangdao Chronicles. Tianjin People Press, China

    Google Scholar 

  • Ramezani E, Mohadjer MRM, Knapp H-D, Theuerkauf M, Manthey M, Joosten H (2012) Pollen-vegetation relationships in the central Caspian (Hyrcanian) forests of northern Iran. Rev Palaeobot Palynol 189:38–49

    Article  Google Scholar 

  • Räsänen S, Hicks S, Odgaard BV (2004) Pollen deposition in mosses and in a modified ‘Tauber trap’ from Hailuoto, Finland: what exactly do the mosses record? Rev Palaeobot Palynol 129:103–116

    Article  Google Scholar 

  • Räsänen S, Suutari H, Nielsen AB (2007) A step further towards quantitative reconstruction of past vegetation in Fennoscandian boreal forests: pollen productivity estimates for six dominant taxa. Rev Palaeobot Palynol 146:208–220

    Article  Google Scholar 

  • Seddon AWR, Froyd CA, Witkowski A, Willis KJ (2014) A quantitative framework for analysis of regime shifts in a Galápagos coastal lagoon. Ecology 95:3046–3055

    Article  Google Scholar 

  • Soepboer W, Sugita S, Lotter AF, van Leeuwen JFN, van der Knaap WO (2007) Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau. Holocene 17:65–77

    Article  Google Scholar 

  • Von Stedingk H, Fyfe RM, Allard A (2008) Pollen productivity estimates from the forest-tundra ecotone in west-central Sweden: implications for vegetation reconstruction at the limits of the boreal forest. Holocene 18:323–332

    Article  Google Scholar 

  • Stockmarr J (1972) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Sugita S (1993) A model of pollen source area for an entire lake surface. Quat Res 39:239–244

    Article  Google Scholar 

  • Sugita S (1994) Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  • Sugita S, Gaillard M-J, Broström A (1999) Landscape openness and pollen records: a simulation approach. Holocene 9:409–421

    Article  Google Scholar 

  • Wang F (1995) Pollen flora of China. Science Press, Beijing

    Google Scholar 

  • Wang YB, Herzschuh U (2011) Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model. Rev Palaeobot Palynol 168:31–40

    Article  Google Scholar 

  • Xu QH, Cao XY, Tian F et al (2014) Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction. Sci China Earth Sci 57:1254–1266

    Article  Google Scholar 

  • Zhao Y, Herzschuh U (2009) Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Veget Hist Archaeobot 18:245–260. https://doi.org/10.1007/s00334-008-0201-7

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 41877433, 41630753), the Hebei Natural Science Foundation and Key Basic Research (Grant No. 18963301D), and Graduate Innovation Project of Hebei Normal University (Grant No. SJ2016025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Additional information

Communicated by M.-J. Gaillard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3901 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wei, Q., Zhang, Z. et al. Relative pollen productivity estimates of major plant taxa and relevant source area of pollen in the warm-temperate forest landscape of northern China. Veget Hist Archaeobot 30, 231–241 (2021). https://doi.org/10.1007/s00334-020-00779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-020-00779-x

Keywords

Navigation