Skip to main content
Log in

Intra-seasonal differences in the atmospheric systems contributing to interannual variations of autumn haze pollution in the North China Plain

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Our understanding of the factors influencing the interannual variation of autumn haze pollution in the North China Plain (NCP) remains quite limited. Here, we investigate interannual variations of atmospheric haze pollution and associated atmospheric anomalies in the NCP during autumn (September, October, and November). Pronounced anticyclonic anomalies tend to be observed around northeastern Asia when more severe haze pollution occurs over the NCP during this season. However, the processes underlying the impact of the atmospheric anomalies on the NCP haze show considerable intra-seasonal differences. In September, anticyclonic anomalies impact the NCP haze via modulating the surface relative humidity (SRH) and boundary layer height (BLH), while changes in surface wind speed (SWS) are not found to be related to the NCP haze. In contrast, the interannual variation of the NCP haze has a close relationship with the changes of SWS, SRH, and BLH in both October and November. The factors responsible for formation of the anticyclonic anomalies around northeastern Asia are found to differ greatly over the 3 months. In September, the formation of anticyclonic anomalies is related to the East Atlantic (EA) pattern, which triggers an eastward propagating atmospheric wave train extending from Europe to northeastern Asia. In October, the Scandinavia teleconnection is crucial for generating anticyclonic anomalies. While in November, the formation of the anticyclonic anomalies is largely due to the joint effect of the Scandinavia and East Atlantic/Western Russian teleconnections, as well as the non-negligible influence caused by sea surface temperature anomalies in the tropical central-eastern Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Cai H, Gui K, Chen Q (2018) Changes in haze trends in the Sichuan-Chongqing region, China, 1980 to 2016. Atmosphere 9(7):277. https://doi.org/10.3390/atmos9070277

    Article  Google Scholar 

  • Cai WJ, Li K, Liao H, Wang HJ, Wu LX (2017) Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat Clim Chang 7:257–263

    Article  Google Scholar 

  • Che H, Zhang X, Li Y, Zhou Z, Qu J, Hao X (2009) Haze trends over the capital cities of 31 provinces in China, 1981–2005. Theor Appl Climatol 97:235–242. https://doi.org/10.1007/s00704-008-0059-8

    Article  Google Scholar 

  • Chen HP, Wang HJ (2015) Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J Geophys Res Atmos 120:5895–5909. https://doi.org/10.1002/2015JD023225

    Article  Google Scholar 

  • Chen SF, Wu R, Chen W, Yu B (2015) Influence of the November Arctic oscillation on the subsequent tropical Pacific sea surface temperature. Int J Climatol 35:4307–4317. https://doi.org/10.1002/joc.4288

    Article  Google Scholar 

  • Chen SF, Wu R, Liu Y (2016) Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring. J Clim 29:1109–1125. https://doi.org/10.1175/JCLI-D-15-0524.1

    Article  Google Scholar 

  • Chen SF, Wu R, Song L, Chen W (2018a) Combined influence of the Arctic oscillation and the Scandinavia pattern on spring surface air temperature variations over Eurasia. J Geophys Res Atmos 123:9410–9429

    Article  Google Scholar 

  • Chen SF, Wu R, Chen W (2018b) Modulation of spring northern tropical Atlantic sea surface temperature on the ENSO-East Asian summer monsoon connection. Int J Climatol 38:5020–5029. https://doi.org/10.1002/joc.5710

    Article  Google Scholar 

  • Chen SF, Wu R (2018) Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index. Clim Dyn 50:375–389. https://doi.org/10.1007/s00382-017-3615-z

    Article  Google Scholar 

  • Chen SF, Guo JP, Song LY, Li J, Liu L, Cohen JB (2019a) Interannual variation of the spring haze pollution over the North China plain: roles of atmospheric circulation and sea surface temperature. Int J Climatol 39:783–798. https://doi.org/10.1002/joc.5842

    Article  Google Scholar 

  • Chen SF, Guo JP, Song LY, Cohen JB, Wang Y (2019b) Temporal disparity of the atmospheric systems contributing to interannual variation of wintertime haze pollution in the North China Plain. Int J Climatol 40:128–144. https://doi.org/10.1002/joc.6198

    Article  Google Scholar 

  • Cohen JB, Prinn RG (2011) Development of a fast, urban chemistry metamodel for inclusion in global models. Atmos Chem Phys 11:7629–7656. https://doi.org/10.5194/acp-11-7629-2011

    Article  Google Scholar 

  • Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918

    Article  Google Scholar 

  • Cohen JB, Wang C (2014) Estimating global black carbon emissions using a top-down Kalman Filter approach. J Geophys Res Atmos 119:307–323. https://doi.org/10.1002/2013JD019912

    Article  Google Scholar 

  • Craig CD, Faulkenberry GD (1979) The application of ridit analysis to detect trends in visibility. Atmos Environ 13:1617–1622

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2:115–143

    Article  Google Scholar 

  • Ding YH, Liu YJ, Liang SJ et al (2014) Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change (in Chinese). Acta Meteorological Sinica 72:835–852

    Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  • Fu GQ, Xu WY, Yang RF, Li JB, Zhao CS (2014) The distribution and trends of fog and haze in the North China Plain over the past 30 years. Atmos Chem Phys 14:11949–11958

    Article  Google Scholar 

  • Gao H, Li X (2015) Influences of El Niño southern oscillation events on haze frequency in eastern China during boreal winters. Int J Climatol 35:2682–2688. https://doi.org/10.1002/joc.4133

    Article  Google Scholar 

  • Gu Y, Wong TW, Law CK, Dong GH, Ho KF, Yang Y, Yim SHL (2018) Impacts of sectoral emissions in China and the implications: air quality, public health, crop production, and economic costs. Environ Res Lett 13:084008

    Article  Google Scholar 

  • Guo J, Liu H, Wang F, Huang J, Xia F, Lou M, Wu Y, Jiang J, Xie T, Zhaxi Y, Yung Y (2016a) Three-dimensional structure of aerosol in China: a perspective from multi-satellite observations. Atmos Res 178–179:580–589. https://doi.org/10.1016/j.atmosres.2016.05.010

    Article  Google Scholar 

  • Guo J, Deng M, Lee S, Wang F, Li Z, Zhai P, Liu H, Lv W, Yao W, Li X (2016b) Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. J Geophys Res Atmos 121:6472–6488. https://doi.org/10.1002/2015JD023257

    Article  Google Scholar 

  • Guo J, Su T, Li Z, Miao Y, Li J, Liu H, Xu H, Cribb M, Zhai P (2017) Declining frequency of summertime local-scale precipitation over eastern China from 1970 to 2010 and its potential link to aerosols. Geophys Res Lett 44:5700–5708. https://doi.org/10.1002/2017GL073533

    Article  Google Scholar 

  • Guo J, Li Y, Cohen J, Li J, Chen D, Xu H, Liu L, Yin J, Hu K, Zhai P (2019) Shift in the temporal trend of boundary layer height trend in China using long-term (1979–2016) radiosonde data. Geophys Res Lett 46:6080–6089. https://doi.org/10.1029/2019GL082666

    Article  Google Scholar 

  • Hanel G (1976) The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Adv Geophys 19:73–188

    Article  Google Scholar 

  • He KB, Huo H, Zhang Q (2002) Urban air pollution in China: current status, characteristics, and progress. Annu Rev Energy Environ 27:397–431

    Article  Google Scholar 

  • Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic oscillation. In: Diaz HF, Beniston M, Bradley R (eds) Climatic change at high elevation sites. Springer, New York, pp 69–94

    Chapter  Google Scholar 

  • Jia D, Jian M (2015) Interannual variability of wintertime monthly surface air temperature in China (in Chinese). Clim Environ Res 20:454–464. https://doi.org/10.3878/j.issn.1006-9585.2015.14240

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986. https://doi.org/10.1126/science.288.5473.1984

    Article  Google Scholar 

  • Koren I, Dagan G, Altaratz O (2014) From aerosol-limited to invigoration of warm convective clouds. Science 344:1143–1146

    Article  Google Scholar 

  • Koschmieder H (1926) Theorie der horizontalenSichtweiteBeit. Phys Atmos 12:33–55

    Google Scholar 

  • Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall and circulation. Geophys Res Lett 33:L21810

    Article  Google Scholar 

  • Li J, Li C, Zhao C (2018) Different trends in extreme and median surface aerosol extinction coefficients over China inferred from quality-controlled visibility data. Atmos Chem Phys 18:3289–3298

    Article  Google Scholar 

  • Li Q, Zhang R, Wang Y (2016b) Interannual variation of the wintertime fog-haze days across central and eastern China and its relation with East Asian winter monsoon. Int J Climatol 36:346–354

    Article  Google Scholar 

  • Li Z, Lau WK-M, Ramanathan V, Wu G, Ding Y, Manoj MG, Liu J, Qian Y, Li J, Zhou T, Fan J, Rosenfeld D, Ming Y, Wang Y, Huang J, Wang B, Xu X, Lee SS, Cribb M, Zhang F, Yang X, Zhao C, Takemura T, Wang K, Xia X, Yin Y, Zhang H, Guo J, Zhai PM, Sugimoto N, Babu SS, Brasseur GP (2016a) Aerosol and monsoon climate interactions over Asia. Rev Geophys 54(4):866–929. https://doi.org/10.1002/2015RG000500

    Article  Google Scholar 

  • Li Z, Guo J, Ding A, Liao H, Liu J, Sun Y, Wang T, Xue H, Zhang H, Zhu B (2017) Aerosol and boundary-layer interactions and impact on air quality. National Sci Rev 4:810–833. https://doi.org/10.1093/nsr/nwx117

    Article  Google Scholar 

  • Liu H, Guo J, Koren I, Altaratz O, Dagan G, Wang Y, Jiang JH, Zhai P, Yung Y (2019) Non-monotonic aerosol effect on precipitation in convective clouds over tropical oceans. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-019-44284-2

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742

    Article  Google Scholar 

  • Rosenfeld D, Dai J, Yu X, Yao Z, Xu X, Yang X, Du C (2007) Inverse relations between amounts of air pollution and orographic precipitation. Science 315:1396–1398. https://doi.org/10.1126/science.1137949

    Article  Google Scholar 

  • Sarkar S, Chokngamwong R, Cervone G, Singh RP, Kafatos M (2006) Variability of aerosol optical depth and aerosol forcing over India. Adv Space Res 37(12):2153–2159

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. https://doi.org/10.1175/2007JCLI2100.1

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase-independent wave activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627

    Article  Google Scholar 

  • Tao WK, Chen JP, Li Z, Wang C, Zhang CD (2012) Impact of aerosols on convective clouds and precipitation. Rev Geophys 50:RG2001. https://doi.org/10.1029/2011RG000369

    Article  Google Scholar 

  • Tie X, Wu D, Brasseur G (2009) Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos Environ 43:2375–2377

    Article  Google Scholar 

  • Tie X, Huang R, Dai W (2016) Effect of heavy haze and aerosol pollution on rice and wheat productions in China. Sci Rep 6:29612

    Article  Google Scholar 

  • Thompson DW, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300. https://doi.org/10.1029/98GL00950

    Article  Google Scholar 

  • Wang F, Guo J, Wu Y, Zhang X, Deng M, Li X, Zhang J, Zhao J (2014a) Satellite observed aerosol-induced variability in warm cloud properties under different meteorological conditions over eastern China. Atmos Environ 84:122–132

    Article  Google Scholar 

  • Wang HJ, Chen HP, Liu JP (2015) Arctic sea ice decline intensified haze pollution in eastern China. Atmos Ocean Sci Lett 8:1–9

    Google Scholar 

  • Wang J, Zhao Q, Zhu ZW, Qi L, Wang X, He J (2018) Interannual variation in the number and severity of autumnal haze days in the Beijing–Tianjin–Hebei region and associated atmospheric circulation anomalies. Dyn Atmos Oceans 84:1–9

    Article  Google Scholar 

  • Wang J, Zhu ZW, Qi L, Zhao Q, He J, Wang X (2019) Two pathways of how remote SST anomalies drive the interannual variability of autumnal haze days in the Beijing–Tianjin–Hebei region, China. Atmos Chem Phys 19:1521–1535

    Article  Google Scholar 

  • Wang K, Dickinson R, Liang S (2009) Clear sky visibility has decreased over land globally from 1973 to 2007. Science 323:1468–1470

    Article  Google Scholar 

  • Wang XP, Mauzerall DK (2006) Evaluating impacts of air pollution in China on public health: implications for future air pollution and energy policies. Atmos Environ 40:1706–1721

    Article  Google Scholar 

  • Wang Y, Zhang R, Saravanan R (2014b) Asian pollution climatically modulates mid-latitude cyclones following hierarchical modeling and observational analysis. Nat Commun 5:3098

    Article  Google Scholar 

  • Wu D, Wu X, Li F (2010) Temporal and spatial variation of haze during 1951-2005 in Chinese mainland (in Chinese). Acta Meteorol Sin 68:680–688

    Google Scholar 

  • Wu Z, Wang B, Li J, Jin FF (2009) An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J Geophys Res Atmos 114:D18120. https://doi.org/10.1029/2009JD011733

    Article  Google Scholar 

  • Xiao D, Li Y, Fan S, Zhang R, Sun J, Wang Y (2014) Plausible influence of Atlantic Ocean SST anomalies on winter haze in China. Theor Appl Climatol 122:249–257

    Article  Google Scholar 

  • Xu P, Chen YF, Ye XJ (2013) Haze, air pollution, and health in China. Lancet. 382:2067. https://doi.org/10.1016/S0140-6736(13)62693-8

    Article  Google Scholar 

  • Yang Y, Liao H, Lou S (2016) Increase in winter haze over eastern China in recent decades: roles of variations in meteorological parameters and anthropogenic emissions. J Geophys Res Atmos 121:13050–13065

    Article  Google Scholar 

  • Yang Y, Zheng X, Gao Z, Wang H, Wang T, Li Y, Lau GNC, Yim SHL (2018) Long-term trends of persistent synoptic circulation events in planetary boundary layer and their relationships with haze pollution in winter half-year over Eastern China. J Geophys Res Atmos 123:10,991–11,007. https://doi.org/10.1029/2018JD028982

    Article  Google Scholar 

  • Yao Y, Lin H, Wu Q (2015) Subseasonal variability of precipitation in China during boreal winter. J Clim 28:6548–6559

    Article  Google Scholar 

  • Yin ZC, Wang HJ (2016) The relationship between the subtropical Western Pacific SST and haze over North-Central North China Plain. Int J Climatol 36:3479–3491. https://doi.org/10.1002/joc.4570

    Article  Google Scholar 

  • Yin ZC, Wang HJ (2017) Role of atmospheric circulations in haze pollution in December 2016. Atmos Chem Phys 17:11673–11681

    Article  Google Scholar 

  • You Y, Cheng X, Zhao T, Xu X, Gong S, Zhang X, Zheng Y, Che H, Yu C, Chang J, Ma G, Wu M (2018) Variations of haze pollution in China modulated by thermal forcing of the Western Pacific Warm Pool. Atmosphere 9:314. https://doi.org/10.3390/atmos9080314

    Article  Google Scholar 

  • Zhao S, Li J, Sun C (2016) Decadal variability in the occurrence of wintertime haze in central eastern China tied to the Pacific Decadal Oscillation. Sci Rep 6:27424

    Article  Google Scholar 

  • Zhu L, Zhang Y, Kan X, Wang J (2018) Transport paths and identification for potential sources of haze pollution in the Yangtze River Delta Urban Agglomeration from 2014 to 2017. Atmosphere 9:502. https://doi.org/10.3390/atmos9120502

    Article  Google Scholar 

Download references

Funding

This study is jointly supported by the National Natural Science Foundation of China (Grants 41605031, 41605050, and 41771399), the Ministry of Science and Technology of China (Grant 2017YFC1501401), and the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (Grant 2016QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shangfeng Chen or Jianping Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Guo, J., Song, L. et al. Intra-seasonal differences in the atmospheric systems contributing to interannual variations of autumn haze pollution in the North China Plain. Theor Appl Climatol 141, 389–403 (2020). https://doi.org/10.1007/s00704-020-03221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03221-4

Navigation