Skip to main content
Log in

Metallic Core-Shell Photonic Crystals for Surface-Enhanced Raman Scattering (SERS)

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Metallic core-shell substrate is specially used to serve ultrasensitive molecular detection down to concentration of micromolar level based on surface-enhanced Raman spectroscopy (SERS). Calculations show that the amorphous poly(methyl methacrylate) (PMMA) photonic crystals incorporated with metal nanoparticles which is either gold or silver nanoparticles can significantly increase the electromagnetic fields at the air dielectric interface, leading to remarkable Raman enhancement. Corresponding experiments and characterizations show the characteristic and performance of core-shell structures which present an excellent sensitivity, reproducibility and stability to act as SERS substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McIntosh KA, McMahon OB, Verghese S (1998) Three-dimensional metallodielectric photonic crystals incorporating flat metal elements. Micro Opt Techn Let 17:153–156

    Article  Google Scholar 

  2. Sievenpiper DF, Yablonovitch E, Winn JN, Fan S, Villeneuve PR, Joannopoulos JD (1998) 3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands. Phys Rev Lett 13:2829–2832

    Article  Google Scholar 

  3. Graf C, Blaaderen AV (2002) Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18:524–534

    Article  CAS  Google Scholar 

  4. Li JF, Zhang YJ, Ding SY, Panneerselvam R, Tian ZQ (2017) Core−shell nanoparticle-enhanced Raman spectroscopy. Chem Rev 117:5002–5069

    Article  CAS  Google Scholar 

  5. Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, Zboril R, Varma RS (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44:540–7590

    Article  Google Scholar 

  6. Khlebtsov NG, Khlebtsov BN (2017) Optimal design of gold nanomatryoshkas with embedded Raman reporters. J Quant Spectrosc Radiat 190:89–102

    Article  CAS  Google Scholar 

  7. Zhu T, Hu Y, Yang K, Dong N, Yu M, Jiang N (2018) A novel SERS nanoprobe based on the use of core-shell nanoparticles with embedded reporter molecule to detect E. coli O157:H7 with high sensitivity. Microchim Acta 30:1–9

    Google Scholar 

  8. Wang N, Zhang, Y, Zhang WS, Xu ZR (2018) A SERS substrate of mesoporous g-C3N4 embedded with in situ growngold nanoparticles for sensitive detection of 6-thioguanine. Sensor Actuat B-Chem 260:400–407

  9. Ali ME, Asing R, Hamid SBA, Hashim U (2014) SERS-active nanomaterials: a new dimension in sensing nucleic acids. Adv Mater Res 925:490–494

    Article  Google Scholar 

  10. Tian S, Neumann O, McClain MJ, Yang X, Zhou L, Zhang C, Nordlander P, Halas NJ (2017) Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection. Nano Lett 17:5071–5077

    Article  CAS  Google Scholar 

  11. Frøhling KB, Alstrøm TS, Bache M, Schmidt MS, Schmidt MN, Larsen J, Jakobsen MH, Boisen A (2016) Surface-enhanced Raman spectroscopic study of DNA and 6-mercapto-1-hexanol interactions using large area mapping. Vib Spectrosc 86:331–336

    Article  Google Scholar 

  12. Nam JM, Oh JW, Lee H, Suh YD (2016) Plasmonic nanogap-enhanced Raman scattering with nanoparticles. J Am Chem Soc 49:2746–2755

    CAS  Google Scholar 

  13. Bai T, Wang M, Cao M, Zhang J, Zhang K, Zhou P, Liu Z, Liu Y, Guo Z, Lu X (2018) Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Anal Bioanal Chem 410:2291–2303

    Article  CAS  Google Scholar 

  14. Li C, Zhang C, Xu S, Huo Y, Jiang S, Yang C, Li Z, Zhao X, Zhang S, Man B (2018) Experimental and theoretical investigation for a hierarchical SERS activated platform with 3D dense hot spots. Sensor Actuat B-Chem 263:408–416

    Article  CAS  Google Scholar 

  15. Kassim S, Padmanabhan SC, Salaun M, Pemble ME (2017) PMMA-gold metallodielectric photonic crystals and inverse opals: preparation and optical properties. AIP Conf Proc 1391:263–265

    Google Scholar 

  16. Tahrin RAA, Azman NS, Kassim S, Harun NA (2017) Preparation and properties of PMMA nanoparticles as 3 dimensional photonic crystals and its thin film via surfactant-free emulsion polymerization. AIP Conf Proc 1885:020092

    Article  Google Scholar 

Download references

Funding

The study received research grant FRGS 59391 from the Ministry of Higher Education Malaysia (MOHE) and research support and facilities from the Universiti Malaysia Terengganu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syara Kassim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassim, S., Tahrin, R.A.A. & Harun, N.A. Metallic Core-Shell Photonic Crystals for Surface-Enhanced Raman Scattering (SERS). Plasmonics 15, 1499–1505 (2020). https://doi.org/10.1007/s11468-020-01176-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01176-w

Keywords

Navigation