Skip to main content
Log in

Early putamen hypertrophy and ongoing hippocampus atrophy predict cognitive performance in the first ten years of relapsing-remitting multiple sclerosis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

The first years of relapsing-remitting multiple sclerosis (RRMS) constitute the most vulnerable phase for the progression of cognitive impairment (CImp), due to a gradual decrease of compensatory mechanisms. In the first 10 years of RRMS, the temporal volumetric changes of deep gray matter structures must be clarified, since they could constitute reliable cognitive biomarkers for diagnostic, prognostic, and therapeutic purposes.

Methods

Forty-five cognitively asymptomatic patients with RRMS lasting ≤ 10 years, and with a brain MRI performed in a year from the neuropsychological evaluation (Te-MRI), were included. They performed the Brief International Cognitive Assessment battery for MS. Thirty-one brain MRIs performed in the year of diagnosis (Td-MRI) and 13 brain MRIs of age- and sex-matched healthy controls (HCs) were also included in the study. The relationships between clinical features, cognitive performances, and Te- and Td-MRI volumes were statistically analyzed.

Results

Cognitively preserved (CP) patients had significantly increased Td-L-putamen (P = 0.035) and Td-R-putamen volume (P = 0.027) with respect to cognitively impaired (CI) ones. CI patients had significantly reduced Te-L-hippocampus (P = 0.019) and Te-R-hippocampus volume (P = 0.042) compared, respectively, with Td-L-hippocampus and Td-R-hippocampus volume. Td-L-putamen volume (P = 0.011) and Te-L-hippocampus volume (P = 0.023) were independent predictors of the Symbol Digit Modalities Test score in all patients (r2 = 0.31, F = 6.175, P = 0.001).

Conclusion

In the first years of RRMS, putamen hypertrophy and hippocampus atrophy could represent promising indices of cognitive performance and reserve, and become potentially useful tools for diagnostic, prognostic, and therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7:1139–1151. https://doi.org/10.1016/S1474-4422(08)70259-X

    Article  PubMed  Google Scholar 

  2. Hoogs M, Kaur S, Smerbeck A, Weinstock-Guttman B, Benedict RHB (2011) Cognition and physical disability in predicting health-related quality of life in multiple sclerosis. Int J MS Care 13:57–63. https://doi.org/10.7224/1537-2073-13.2.57

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bruce JM, Bruce AS, Hancock L, Lynch S (2010) Self-reported memory problems in multiple sclerosis: influence of psychiatric status and normative dissociative experiences. Arch Clin Neuropsychol 25:39–48. https://doi.org/10.1093/arclin/acp092

    Article  PubMed  Google Scholar 

  4. Akbar N, Honarmand K, Feinstein A (2011) Self-assessment of cognition in multiple sclerosis. Cogn Behav Neurol 24:115–121. https://doi.org/10.1097/WNN.0b013e31822a20ae

    Article  PubMed  Google Scholar 

  5. Roberg BL, Bruce JM, Lovelace CT, Lynch S (2012) How patients with multiple sclerosis perceive cognitive slowing. Clin Neuropsychol 26:1278–1295. https://doi.org/10.1080/13854046.2012.733413

    Article  PubMed  Google Scholar 

  6. Goverover Y, Chiaravalloti N, DeLuca J (2005) The relationship between self-awareness of neurobehavioral symptoms, cognitive functioning, and emotional symptoms in multiple sclerosis. Mult Scler J 11:203–212. https://doi.org/10.1191/1352458505ms1153oa

    Article  Google Scholar 

  7. Amato MP, Ponziani G, Siracusa G, Sorbi S (2001) Cognitive dysfunction in early-onset multiple sclerosis: a reappraisal after 10 years. Arch Neurol 58:1602–1606 http://www.ncbi.nlm.nih.gov/pubmed/11594918 (accessed August 11, 2018)

    Article  CAS  Google Scholar 

  8. Hildebrandt H, Lanz M, Hahn HK, Hoffmann E, Schwarze B, Schwendemann G, Kraus JA (2007) Cognitive training in MS: effects and relation to brain atrophy. Restor Neurol Neurosci 25:33–43 http://www.ncbi.nlm.nih.gov/pubmed/17473394 (accessed August 11, 2018)

    PubMed  Google Scholar 

  9. Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593. https://doi.org/10.1146/annurev.neuro.25.112701.142937

    Article  CAS  PubMed  Google Scholar 

  10. Arsalidou M, Duerden EG, Taylor MJ (2013) The centre of the brain: topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Hum Brain Mapp 34:3031–3054. https://doi.org/10.1002/hbm.22124

    Article  PubMed  Google Scholar 

  11. Matthews BR (2015) Memory dysfunction. Continuum (Minneap Minn) 21:613–626. https://doi.org/10.1212/01.CON.0000466656.59413.29

    Article  Google Scholar 

  12. Foerde K, Shohamy D (2011) The role of the basal ganglia in learning and memory: insight from Parkinson’s disease. Neurobiol Learn Mem 96:624–636. https://doi.org/10.1016/j.nlm.2011.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Papathanasiou A, Messinis L, Zampakis P, Panagiotakis G, Gourzis P, Georgiou V, Papathanasopoulos P (2015) Thalamic atrophy predicts cognitive impairment in relapsing remitting multiple sclerosis. Effect on instrumental activities of daily living and employment status. J Neurol Sci 358:236–242. https://doi.org/10.1016/j.jns.2015.09.001

    Article  PubMed  Google Scholar 

  14. Debernard L, Melzer TR, Alla S, Eagle J, Van Stockum S, Graham C, Osborne JR, Dalrymple-Alford JC, Miller DH, Mason DF (2015) Deep grey matter MRI abnormalities and cognitive function in relapsing-remitting multiple sclerosis. Psychiatry Res 234:352–361. https://doi.org/10.1016/j.pscychresns.2015.10.004

    Article  PubMed  Google Scholar 

  15. Damjanovic D, Valsasina P, Rocca MA, Stromillo ML, Gallo A, Enzinger C, Hulst HE, Rovira A, Muhlert N, De Stefano N, Bisecco A, Fazekas F, Arévalo MJ, Yousry TA, Filippi M (2017) Hippocampal and deep gray matter nuclei atrophy is relevant for explaining cognitive impairment in MS: a multicenter study. AJNR Am J Neuroradiol 38:18–24. https://doi.org/10.3174/ajnr.A4952

    Article  CAS  PubMed  Google Scholar 

  16. Vollmer T, Huynh L, Kelley C, Galebach P, Signorovitch J, DiBernardo A, Sasane R (2016) Relationship between brain volume loss and cognitive outcomes among patients with multiple sclerosis: a systematic literature review. Neurol Sci 37:165–179. https://doi.org/10.1007/s10072-015-2400-1

    Article  PubMed  Google Scholar 

  17. Hulst HE, Gehring K, Uitdehaag BM, Visser LH, Polman CH, Barkhof F, Sitskoorn MM, Geurts JJ (2014) Indicators for cognitive performance and subjective cognitive complaints in multiple sclerosis: a role for advanced MRI? Mult Scler J 20:1131–1134. https://doi.org/10.1177/1352458513513969

    Article  Google Scholar 

  18. Langdon D, Amato M, Boringa J, Brochet B, Foley F, Fredrikson S, Hämäläinen P, Hartung H-P, Krupp L, Penner I, Reder A, Benedict R (2012) Recommendations for a brief international cognitive assessment for multiple sclerosis (BICAMS). Mult Scler J 18:891–898. https://doi.org/10.1177/1352458511431076

    Article  CAS  Google Scholar 

  19. Goretti B, Niccolai C, Hakiki B, Sturchio A, Falautano M, Minacapelli E, Martinelli V, Incerti C, Nocentini U, Murgia M, Fenu G, Cocco E, Marrosu MG, Garofalo E, Ambra FI, Maddestra M, Consalvo M, Viterbo RG, Trojano M, Losignore NA, Zimatore GB, Pietrolongo E, Lugaresi A, Langdon D, Portaccio E, Amato MP The brief international cognitive assessment for multiple sclerosis (BICAMS): normative values with gender, age and education corrections in the Italian population. BMC Neurol 14(2014):171. https://doi.org/10.1186/s12883-014-0171-6

  20. Battaglini M, Jenkinson M, De Stefano N (2012) Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33:2062–2071. https://doi.org/10.1002/hbm.21344

    Article  PubMed  Google Scholar 

  21. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 23:S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  22. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage. 17:479–489 http://www.ncbi.nlm.nih.gov/pubmed/12482100 (accessed August 11, 2018)

    Article  Google Scholar 

  23. Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56, 907:–22. https://doi.org/10.1016/j.neuroimage.2011.02.046

  24. Amann M, Andělová M, Pfister A, Mueller-Lenke N, Traud S, Reinhardt J, Magon S, Bendfeldt K, Kappos L, Radue E-W, Stippich C, Sprenger T (2015) Subcortical brain segmentation of two dimensional T1-weighted data sets with FMRIB’s integrated registration and segmentation tool (FIRST). NeuroImage Clin 7:43–52. https://doi.org/10.1016/j.nicl.2014.11.010

    Article  PubMed  Google Scholar 

  25. Vidal-Jordana A, Pareto D, Sastre-Garriga J, Auger C, Ciampi E, Montalban X, Rovira A (2017) Measurement of cortical thickness and volume of subcortical structures in multiple sclerosis: agreement between 2D spin-echo and 3D MPRAGE T1-weighted images. Am J Neuroradiol 38:250–256. https://doi.org/10.3174/ajnr.A4999

    Article  CAS  PubMed  Google Scholar 

  26. Hayter AJ (1986) The maximum familywise error rate of Fisher’s least significant difference test. J Am Stat Assoc 81:1000–1004. https://doi.org/10.1080/01621459.1986.10478364

    Article  Google Scholar 

  27. Levin JR, Serlin RC, Seaman MA (1994) A controlled, powerful multiple-comparison strategy for several situations. Psychol Bull 115:153–159. https://doi.org/10.1037/0033-2909.115.1.153

    Article  Google Scholar 

  28. Seaman MA, Levin JR, Serlin RC (1991) New developments in pairwise multiple comparisons: some powerful and practicable procedures. Psychol Bull 110:577–586. https://doi.org/10.1037/0033-2909.110.3.577

    Article  Google Scholar 

  29. Buchsbaum MS, Shihabuddin L, Brickman AM, Miozzo R, Prikryl R, Shaw R, Davis K (2003) Caudate and putamen volumes in good and poor outcome patients with schizophrenia. Schizophr Res 64:53–62. https://doi.org/10.1016/s0920-9964(02)00526-1

    Article  PubMed  Google Scholar 

  30. Lin JJ, Riley JD, Hsu DA, Stafstrom CE, Dabbs K, Becker T, Seidenberg M, Hermann BP (2012) Striatal hypertrophy and its cognitive effects in new-onset benign epilepsy with centrotemporal spikes. Epilepsia. 53:677–685. https://doi.org/10.1111/j.1528-1167.2012.03422.x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rubenstein JE (2005) Benign epilepsy with centrotemporal spikes. Treat Pediatr Neurol Disord 53:117–119. https://doi.org/10.1111/j.1528-1167.2009.02229.x

    Article  Google Scholar 

  32. Bonner-Jackson A, Long JD, Westervelt H, Tremont G, Aylward E, Paulsen JS, PREDICT-HD Investigators and coordinators of the Huntington Study Group (2013) Cognitive reserve and brain reserve in prodromal Huntington’s disease. J Int Neuropsychol Soc 19:739–750. https://doi.org/10.1017/S1355617713000507

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mazzocchi-Jones D, Döbrössy M, Dunnett SB (n.d.) Environmental enrichment facilitates long-term potentiation in embryonic striatal grafts. Neurorehabil Neural Repair 25:548–557. https://doi.org/10.1177/1545968311402090

  34. Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42:183–200. https://doi.org/10.1006/brcg.1999.1099

    Article  CAS  PubMed  Google Scholar 

  35. Koziol LF, Budding DE, Chidekel D (2010) Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum 9:499–529. https://doi.org/10.1007/s12311-010-0192-7

    Article  PubMed  Google Scholar 

  36. Tortorella C, Romano R, Direnzo V, Taurisano P, Zoccolella S, Iaffaldano P, Fazio L, Viterbo R, Popolizio T, Blasi G, Bertolino A, Trojano M (2013) Load-dependent dysfunction of the putamen during attentional processing in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 19:1153–1160. https://doi.org/10.1177/1352458512473671

    Article  CAS  PubMed  Google Scholar 

  37. Cavallari M, Ceccarelli A, Wang G-Y, Moscufo N, Hannoun S, Matulis CR, Jackson JS, Glanz BI, Bakshi R, Neema M, Guttmann CRG (2014) Microstructural changes in the striatum and their impact on motor and neuropsychological performance in patients with multiple sclerosis. PLoS One 9:e101199. https://doi.org/10.1371/journal.pone.0101199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krämer J, Meuth S, Tenberge J-G, Schiffler P, Wiendl H, Deppe M (2015) Early and Degressive putamen atrophy in multiple sclerosis. Int J Mol Sci 16:23195–23209. https://doi.org/10.3390/ijms161023195

    Article  PubMed  PubMed Central  Google Scholar 

  39. Planche V, Koubiyr I, Romero JE, Manjon JV, Coupé P, Deloire M, Dousset V, Brochet B, Ruet A, Tourdias T (2018) Regional hippocampal vulnerability in early multiple sclerosis: dynamic pathological spreading from dentate gyrus to CA1. Hum Brain Mapp 39:1814–1824. https://doi.org/10.1002/hbm.23970

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hulst HE, Schoonheim MM, Roosendaal SD, Popescu V, Schweren LJS, van der Werf YD, Visser LH, Polman CH, Barkhof F, Geurts JJG (2012) Functional adaptive changes within the hippocampal memory system of patients with multiple sclerosis. Hum Brain Mapp 33:2268–2280. https://doi.org/10.1002/hbm.21359

    Article  PubMed  Google Scholar 

  41. Hulst HE, Schoonheim MM, Van Geest Q, Uitdehaag BM, Barkhof F, Geurts JJ (2015) Memory impairment in multiple sclerosis: relevance of hippocampal activation and hippocampal connectivity. Mult Scler J 21:1705–1712. https://doi.org/10.1177/1352458514567727

    Article  CAS  Google Scholar 

  42. Sumowski JF, Rocca MA, Leavitt VM, Riccitelli G, Sandry J, DeLuca J, Comi G, Filippi M (2016) Searching for the neural basis of reserve against memory decline: intellectual enrichment linked to larger hippocampal volume in multiple sclerosis. Eur J Neurol 23:39–44. https://doi.org/10.1111/ene.12662

    Article  CAS  PubMed  Google Scholar 

  43. Amato MP, Portaccio E, Goretti B, Zipoli V, Iudice A, Della Pina D, Malentacchi G, Sabatini S, Annunziata P, Falcini M, Mazzoni M, Mortilla M, Fonda C, De Stefano N, TuSCIMS Study Group (2010) Relevance of cognitive deterioration in early relapsing-remitting MS: a 3-year follow-up study. Mult Scler 16:1474–1482. https://doi.org/10.1177/1352458510380089

    Article  PubMed  Google Scholar 

  44. Llufriu S, Rocca MA, Pagani E, Riccitelli GC, Solana E, Colombo B, Rodegher M, Falini A, Comi G, Filippi M (2018) Hippocampal-related memory network in multiple sclerosis: a structural connectivity analysis, Mult Scler J 135245851877183. doi: https://doi.org/10.1177/1352458518771838

  45. Zaidel DW, Esiri MM, Oxbury JM (1993) Regional differentiation of cell densities in the left and right hippocampi of epileptic patients. J Neurol 240:322–325 http://www.ncbi.nlm.nih.gov/pubmed/8326341 (accessed August 12, 2018)

    Article  CAS  Google Scholar 

  46. Seidman LJ, Faraone SV, Goldstein JM, Kremen WS, Horton NJ, Makris N, Toomey R, Kennedy D, Caviness VS, Tsuang MT Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry 59(2002):839–849 http://www.ncbi.nlm.nih.gov/pubmed/12215084 (accessed August 12, 2018)

  47. Shu X-J, Xue L, Liu W, Chen F-Y, Zhu C, Sun X-H, Wang X-P, Liu Z-C, Zhao H (2013) More vulnerability of left than right hippocampal damage in right-handed patients with post-traumatic stress disorder. Psychiatry Res Neuroimaging 212:237–244. https://doi.org/10.1016/j.pscychresns.2012.04.009

    Article  Google Scholar 

  48. Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7:841–851. https://doi.org/10.1016/S1474-4422(08)70191-1

    Article  PubMed  Google Scholar 

  49. Amato MP, Goretti B, Ghezzi A, Lori S, Zipoli V, Portaccio E, Moiola L, Falautano M, De Caro MF, Lopez M, Patti F, Vecchio R, Pozzilli C, Bianchi V, Roscio M, Comi G, Trojano M (2008) Multiple sclerosis study group of the Italian Neurological Society, cognitive and psychosocial features of childhood and juvenile MS. Neurology. 70:1891–1897. https://doi.org/10.1212/01.wnl.0000312276.23177.fa

    Article  CAS  PubMed  Google Scholar 

  50. Rocca MA, Amato MP, De Stefano N, Enzinger C, Geurts JJ, Penner I-K, Rovira A, Sumowski JF, Valsasina P, Filippi M, MAGNIMS Study Group (2015) Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol 14:302–317. https://doi.org/10.1016/S1474-4422(14)70250-9

    Article  PubMed  Google Scholar 

  51. DeLuca GC, Yates RL, Beale H, Morrow SA (2015) Cognitive impairment in multiple sclerosis: clinical, radiologic and pathologic insights. Brain Pathol 25:79–98. https://doi.org/10.1111/bpa.12220

    Article  PubMed  Google Scholar 

  52. Sumowski JF, Benedict R, Enzinger C, Filippi M, Geurts JJ, Hamalainen P, Hulst H, Inglese M, Leavitt VM, Rocca MA, Rosti-Otajarvi EM, Rao S (2018) Cognition in multiple sclerosis. Neurology. 90:278–288. https://doi.org/10.1212/WNL.0000000000004977

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381. https://doi.org/10.1146/annurev.ne.09.030186.002041

    Article  CAS  PubMed  Google Scholar 

  54. Koo MW, Kim YK, Ku KM, Park WW, Minn YK (2012) Exofocal anterograde Transsynaptic neuronal death in the globus pallidus: two case reports. J Clin Neurol 8:308–310. https://doi.org/10.3988/jcn.2012.8.4.308

    Article  PubMed  PubMed Central  Google Scholar 

  55. Deloire MSA, Ruet A, Hamel D, Bonnet M, Dousset V, Brochet B (2011) MRI predictors of cognitive outcome in early multiple sclerosis. Neurology. 76:1161–1167. https://doi.org/10.1212/WNL.0b013e318212a8be

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bishop CA, Newbould RD, Lee JS, Honeyfield L, Quest R, Colasanti A, Ali R, Mattoscio M, Cortese A, Nicholas R, Matthews PM, Muraro PA, Waldman AD (2017) Analysis of ageing-associated grey matter volume in patients with multiple sclerosis shows excess atrophy in subcortical regions. NeuroImage Clin 13:9–15. https://doi.org/10.1016/j.nicl.2016.11.005

    Article  PubMed  Google Scholar 

  57. Filippi M, Rocca MA, Barkhof F, Brück W, Chen JT, Comi G, DeLuca G, De Stefano N, Erickson BJ, Evangelou N, Fazekas F, Geurts JJ, Lucchinetti C, Miller DH, Pelletier D, Popescu BFG, Lassmann H (2012) Attendees of the correlation between pathological MRI findings in MS workshop, association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 11:349–360. https://doi.org/10.1016/S1474-4422(12)70003-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Paola Gentile, adjunct lecturer and research fellow in translation and interpreting at the University of Trieste, for the cultural adaptation of the list of sixteen words for the California Verbal Learning Test-II of the BICAMS battery and for providing English language support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Elisa Morelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The protocol and procedures employed in this study were approved by the Local Ethical Committee. An informed consent was signed by all participants prior to assessment, according to the Declaration of Helsinski (October 2013 version).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morelli, M.E., Baldini, S., Sartori, A. et al. Early putamen hypertrophy and ongoing hippocampus atrophy predict cognitive performance in the first ten years of relapsing-remitting multiple sclerosis. Neurol Sci 41, 2893–2904 (2020). https://doi.org/10.1007/s10072-020-04395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04395-5

Keywords

Navigation