Skip to main content
Log in

Morphological features, dielectric and thermal properties of epoxy–copper cobaltite nanocomposites: preparation and characterization

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Epoxy (LY-556/HY-951) system was cured at ambient temperature and its copper cobaltite nanocomposites with different percentage loadings of nanoparticles were prepared via powered shear mixing with HY-951 (triethylene-tetra-amine, TETA) hardener. Characterizations of the nanocomposites were done by various methods like XRD, TEM, FTIR, TGA, DSC, SEM, VNA, DETA and XPS. XRD, XPS and TEM showed the successful preparation of copper cobaltite nanoparticles. Further, FTIR studies confirmed accomplishment of curing and consequently the formation of cross-linked network in the nanocomposites. The morphological analysis revealed that the nanoparticles of the copper cobaltite were uniformly distributed inside the epoxy matrix to 5% loading. The enhancement in impact properties of nanocomposites with increase in filler content was supported by fractured surface studies for even distribution of copper cobaltite nanoparticles. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses showed enhancement in thermal stability as well as positive shift in the glass transition temperature for epoxy with copper cobaltite filler in comparison to neat epoxy resin. The positive shift in the glass transition temperature of the nanocomposites indicated improved interaction between copper cobaltite and epoxy matrix. These nanocomposites were also evaluated for their electromagnetic properties using dielectric thermal analyzer (DETA) and vector network analyzer (VNA) for determination of their permittivity and permeability, respectively. The improved thermal, mechanical and electromagnetic properties of epoxy–copper cobaltite nanocomposites make them potential candidates for microwave applications in a wide range of areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vinoy K J and Jha R M 1995 Sadhana 20 815

    Google Scholar 

  2. Kumar A, Agarwala V and Singh D 2013 Prog. Electromagn. Res. 29 223

    Google Scholar 

  3. Das N C, Khastgir D, Chaki T K and Chakraborty A 2000 Composites Part A: Appl. Sci. Manuf. 31 1069

    Google Scholar 

  4. Li B W, Shen Y, Yue Z X and Nan C W 2007 J. Magn. Magn. Mater. 313 322

    CAS  Google Scholar 

  5. Wu M, He H, Zhao Z and Yao X 2000 J. Phys. D: Appl. Phys. 33 2398

    CAS  Google Scholar 

  6. Nakamura T, Tsutaoka T and Hatakeyama K 1994 J. Magn. Magn. Mater. 138 319

    CAS  Google Scholar 

  7. Yusoff A N, Sani J M, Abdullah M H, Ahmad S H and Ahmad N 2007 Sains Malays. 36 65

    CAS  Google Scholar 

  8. Kong I, Ahmad S H, Abdullah M H, Hui D, Yusoff A N and Puryanti D 2010 J. Magn. Magn. Mater. 322 3401

    CAS  Google Scholar 

  9. Jiang J, Li Y, Liu J, Huang X, Yuan C and Lou X W 2012 Adv. Mater. 24 5166

    CAS  Google Scholar 

  10. Gujar T P, Shinde V R, Lokhande C D, Kim W Y, Jung K D and Joo O S 2007 Electrochem. Commun. 9 504

    CAS  Google Scholar 

  11. Fan Z, Chen J H, Wang M Y, Cui K Z, Zhou H H and Kuang Y F 2006 Diam. Relat. Mater. 15 1478

    CAS  Google Scholar 

  12. Tao F, Zhao Y Q, Zhang G Q and Li H L 2007 Electrochem. Commun. 9 1282

    CAS  Google Scholar 

  13. Zhao G Y, Xu C L and Li H L 2007 J. Power Sources 163 1132

    CAS  Google Scholar 

  14. Kim S H, Kim Y I, Park J H and Ko J M 2009 Int. J. Electrochem. Sci. 4 1489

    CAS  Google Scholar 

  15. Liu J P, Jiang J, Cheng C W, Li H X, Zhang J X, Gong H et al 2011 Adv. Mater. 23 2076

    CAS  Google Scholar 

  16. Chang J K, Lee M T, Huang C H and Tsai W T 2008 Mater. Chem. Phys. 108 124

    CAS  Google Scholar 

  17. Sun X, Wang G, Sun H, Lu F, Yu M and Lian J 2013 J. Power Sources 238 150

    CAS  Google Scholar 

  18. Padmanathan N and Selladurai S 2013 Ionics 19 1535

    CAS  Google Scholar 

  19. Padmanathan N and Selladurai S 2014 RSC Adv. 4 8341

    CAS  Google Scholar 

  20. Fu W, Li X, Zhao C, Liu Y, Zhang P, Zhou J et al 2015 Mater. Lett. 149 1

    CAS  Google Scholar 

  21. Li L, Zhang Y Q, Liu X Y, Shi S J, Zhao X Y, Zhang H et al 2014 Electrochim. Acta 116 467

    CAS  Google Scholar 

  22. Padmanathan N and Selladurai S 2014 Ionics 20 479

    CAS  Google Scholar 

  23. Pendashteh A, Moosavifard S E, Rahmanifar M S, Wang Y, El-Kady M F, Kaner R B et al 2015 Chem. Mater. 27 3919

    CAS  Google Scholar 

  24. Krishnan S G, Reddy M V, Harilal M, Vidyadharan B, Misnon I I, Rahim M H A et al 2015 Electrochim. Acta 161 312

    CAS  Google Scholar 

  25. Marsan B, Fradette N and Beaudoin G 1992 J. Electrochem. Soc. 139 1889

    Google Scholar 

  26. Wang Q, Chen D and Zhang D 2015 RSC Adv. 5 96448

    CAS  Google Scholar 

  27. Chi B, Lin H and Li J 2008 Inter. J. Hydrog. Energy 33 4763

    CAS  Google Scholar 

  28. Rosa-Toro A L, Berenguer R, Quijada C, Montilla F, Morallón E and Vazquez J L 2006 J. Phys. Chem. B 110 24021

    Google Scholar 

  29. Sharma Y, Sharma N, Subba Rao G V and Chowdari B V R 2007 J. Power Sources 173 495

    CAS  Google Scholar 

  30. Yan J, Yang H, Tang Y, Lu Z, Yao S Z M and Han Y 2009 Renew. Energy 34 2399

    CAS  Google Scholar 

  31. Sun S, Wen Z, Jin J, Cui Y and Lu Y 2013 Micropor. Mesopor. Mat. 169 242

    CAS  Google Scholar 

  32. Pu J, Wang J, Jin X Q, Cui F L, Sheng E H and Wang Z H 2013 Electrochim. Acta 106 226

    CAS  Google Scholar 

  33. Khairy M and Mousa M A 2019 J. Ovonic Res. 15 181

    CAS  Google Scholar 

  34. Pinnavaia T P and Beall G W 2000 Polymer–clay nanocomposites. Wiley Series in Polymer Science (New York: Wiley) p 127

  35. Zhang D, Li K, Li Y, Sun H, Cheng J and Zhang J 2018 Soft Matter 14 8740

    CAS  Google Scholar 

  36. Maity T, Samanta B C, Dalai S and Banthia A K 2007 Mater. Sci. Eng. A 464 38

    Google Scholar 

  37. Bahadoor A, Wang Y and Afsar M N 2005 J. Appl. Phys. 97 10F105

    Google Scholar 

  38. Giannakopoulou T, Kompotiatis L, Kontogeorgakos A and Kordas G 2002 J. Magn. Magn. Mater. 246 360

    CAS  Google Scholar 

  39. Zhang H, Liu Z, Ma C, Xi Y, Zhang L and Wu M 2002 Mater. Sci. Eng. B 96 289

    Google Scholar 

  40. Li G H, Dai L Z, Lu D S and Peng S Y 1990 J. Solid State Chem. 89 167

    CAS  Google Scholar 

  41. Fierro G, Lo J M, Inversi M, Dragone R and Porta P 2000 Top. Catal. 10 39

    CAS  Google Scholar 

  42. Frost D C, Ishitani A and McDowell C A 1972 Mol. Phys. 24 861

    CAS  Google Scholar 

  43. Fierro G, Dragone R, Moretti G and Porta P 1992 Surf. Interface Anal. 19 565

    CAS  Google Scholar 

  44. Serov A, Andersen N I, Roy A J, Matanovic I, Artyushkova K and Atanassov P 2015 J. Electrochem. Soc. 162 F449

    CAS  Google Scholar 

  45. Bikkarolla S K and Papakonstantinou P J 2015 J. Power Sources 281 243

    CAS  Google Scholar 

  46. Hosseini S A, Niaei A, Salari D, Alvarez-Galvan M C and Fierro J L G 2014 Ceram. Int. 40 6157

    CAS  Google Scholar 

  47. Li X, Wang L, Shi J, Du N and He G 2016 ACS Appl. Mater. Interfaces8 17276

    CAS  Google Scholar 

  48. Han S, Lin L Y, Zhang K H, Luo L J, Peng X H and Hu N 2017 Mater. Lett. 193 89

    CAS  Google Scholar 

  49. Kokabi M, Arabgol F and Manteghian M 2005 Iran. Polym. J. 14 71

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Namburi Eswara Prasad, Director, DMSRDE, Kanpur, for his support to carry out the work successfully. We also acknowledge to Dr Ajit Shankar Singh, DMSRDE, Kanpur, for his kind support for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Pratap Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.P., Singh, A., Kumar, N. et al. Morphological features, dielectric and thermal properties of epoxy–copper cobaltite nanocomposites: preparation and characterization. Bull Mater Sci 43, 114 (2020). https://doi.org/10.1007/s12034-020-02092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02092-9

Keywords

Navigation