Skip to main content
Log in

Enhancing bifunctionality of CoN nanowires by Mn doping for long-lasting Zn-air batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Tailoring the nanostructure and composition of transition metal nitrides is highly important for their use as potent low-cost electrocatalysts. Cobalt nitride (CoN) exhibits strong catalytic activity for oxygen evolution reaction (OER). However, its poor catalytic efficiency for oxygen reduction reaction (ORR) hinders its application in rechargeable zinc-air batteries (ZABs) as the air cathode. In this work, we deploy the effective strategy of Mn doping to improve both OER and ORR activity of CoN nanowires as the cathode material for ZAB. Theoretical calculation predicts that moderate Mn doping in cobalt nitride results in a downshift of the d-band center and reduces the adsorption energy of reaction intermediates. With ∼10 at% Mn dopants, stronger catalysis activities for both OER and ORR are achieved compared to pure CoN nanowires. Subsequently, both aqueous and flexible quasi-solid-state ZABs are constructed using the Mn-doped CoN nanowires array as additive-free air cathode. Both types of devices present large open circuit potential, high power density and long-cycle stability. This work pushes forward the progress in developing cost-effective ZABs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu J, Liang R, Liu G, Yu A, Bai Z, Yang L, Chen Z. Adv Mater, 2019, 31: 1805230

    Google Scholar 

  2. Yang D, Zhang L, Yan X, Yao X. Small Methods, 2017, 1: 1700209

    Google Scholar 

  3. Liu X, Jiang L, Zhu Z, Chen S, Dou Y, Liu P, Wang Y, Yin H, Tang Z, Zhao H. Mater Today Energy, 2019, 1: 24–29

    Google Scholar 

  4. Chen X, Zhou Z, Karahan HE, Shao Q, Wei L, Chen Y. Small, 2018, 14: 1801929

    Google Scholar 

  5. Dionigi F, Strasser P. Adv Energy Mater, 2016, 6: 1600621

    Google Scholar 

  6. Wang HF, Tang C, Zhang Q. Adv Funct Mater, 2018, 28: 1803329

    Google Scholar 

  7. Yang D, Tan H, Rui X, Yu Y. Electrochem Energ Rev, 2019, 1: 395–427

    Google Scholar 

  8. Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H. Nat Commun, 2013, 4: 1805

    PubMed  Google Scholar 

  9. Wang K, Liao C, Wang W, Xiao Y, Liu X, Zhao S. Mater Today Energy, 2019, 14: 100340

    Google Scholar 

  10. Peng Z, Jia D, Al-Enizi AM, Elzatahry AA, Zheng G. Adv Energy Mater, 2015, 5: 1402031

    Google Scholar 

  11. Deng S, Shen Y, Xie D, Lu Y, Yu X, Yang L, Wang X, Xia X, Tu J. J Energy Chem, 2019, 1: 61–67

    Google Scholar 

  12. Qin Y, Yuan J, Zhang L, Zhao B, Liu Y, Kong Y, Cao J, Chu F, Tao Y, Liu M. Small, 2016, 1: 2549–2553

    Google Scholar 

  13. Liu L, Wang Y, Yan F, Zhu C, Geng B, Chen Y, Chou S. Small Methods, 2020, 4: 1900571

    CAS  Google Scholar 

  14. Fu G, Yan X, Chen Y, Xu L, Sun D, Lee JM, Tang Y. Adv Mater, 2018, 30: 1704609

    Google Scholar 

  15. Hao P, Zhu W, Li L, Xin Y, Xie J, Lei F, Tian J, Tang B. Chem Commun, 2019, 1: 10138–10141

    Google Scholar 

  16. Guan C, Sumboja A, Wu H, Ren W, Liu X, Zhang H, Liu Z, Cheng C, Pennycook SJ, Wang J. Adv Mater, 2017, 29: 1704117

    Google Scholar 

  17. Ma TY, Dai S, Jaroniec M, Qiao SZ. J Am Chem Soc, 2014, 1: 13925–13931

    Google Scholar 

  18. Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, Somsen C, Muhler M, Schuhmann W. Adv Energy Mater, 2016, 6: 1502313

    Google Scholar 

  19. Xiao Z, Wang Y, Huang YC, Wei Z, Dong CL, Ma J, Shen S, Li Y, Wang S. Energy Environ Sci, 2017, 1: 2563–2569

    Google Scholar 

  20. Zhang Y, Ouyang B, Xu J, Jia G, Chen S, Rawat RS, Fan HJ. Angew Chem Int Ed, 2016, 1: 8670–8674

    Google Scholar 

  21. Xu K, Cheng H, Liu L, Lv H, Wu X, Wu C, Xie Y. Nano Lett, 2016, 1: 578–583

    Google Scholar 

  22. Aijaz A, Masa J, Rösler C, Xia W, Weide P, Botz AJR, Fischer RA, Schuhmann W, Muhler M. Angew Chem Int Ed, 2016, 1: 4087–4091

    Google Scholar 

  23. Ahn SH, Manthiram A. Small, 2017, 13: 1702068

    Google Scholar 

  24. Ye Z, Li T, Ma G, Dong Y, Zhou X. Adv Funct Mater, 2017, 27: 1704083

    Google Scholar 

  25. Ramirez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S. J Phys Chem C, 2014, 1: 14073–14081

    Google Scholar 

  26. Yang Y, Wang Y, Xiong Y, Huang X, Shen L, Huang R, Wang H, Pastore JP, Yu SH, Xiao L, Brock JD, Zhuang L, Abruna HD. J Am Chem Soc, 2019, 1: 1463–1466

    Google Scholar 

  27. Han X, Zhang W, Ma X, Zhong C, Zhao N, Hu W, Deng Y. Adv Mater, 2019, 31: 1808281

    Google Scholar 

  28. Fu G, Wang J, Chen Y, Liu Y, Tang Y, Goodenough JB, Lee JM. Adv Energy Mater, 2018, 8: 1802263

    Google Scholar 

  29. Li YJ, Cui L, Da PF, Qiu KW, Qin WJ, Hu WB, Du XW, Davey K, Ling T, Qiao SZ. Adv Mater, 2018, 30: 1804653

    Google Scholar 

  30. Qiu HJ, Du P, Hu K, Gao J, Li H, Liu P, Ina T, Ohara K, Ito Y, Chen M. Adv Mater, 2019, 31: 1900843

    Google Scholar 

  31. Chen Z, Song Y, Cai J, Zheng X, Han D, Wu Y, Zang Y, Niu S, Liu Y, Zhu J, Liu X, Wang G. Angew Chem Int Ed, 2018, 1: 5076–5080

    Google Scholar 

  32. Meng C, Ling T, Ma TY, Wang H, Hu Z, Zhou Y, Mao J, Du XW, Jaroniec M, Qiao SZ. Adv Mater, 2017, 29: 1604607

    Google Scholar 

  33. Ouyang B, Zhang Y, Xia X, Rawat RS, Fan HJ. Mater Today Nano, 2018, 1: 28–47

    Google Scholar 

  34. Zhang Y, Rawat RS, Fan HJ. Small Methods, 2017, 1: 1700164

    Google Scholar 

  35. Walter C, Menezes PW, Orthmann S, Schuch J, Connor P, Kaiser B, Lerch M, Driess M. Angew Chem Int Ed, 2018, 1: 698–702

    Google Scholar 

  36. Ouyang B, Zhang Y, Wang Y, Zhang Z, Fan HJ, Rawat RS. J Mater Chem A, 2016, 1: 17801–17808

    Google Scholar 

  37. Xu K, Ding H, Lv H, Chen P, Lu X, Cheng H, Zhou T, Liu S, Wu X, Wu C, Xie Y. Adv Mater, 2016, 1: 3326–3332

    Google Scholar 

  38. Cui X, Ren P, Deng D, Deng J, Bao X. Energy Environ Sci, 2016, 1: 123–129

    Google Scholar 

  39. Liang H, Gandi AN, Anjum DH, Wang X, Schwingenschlögl U, Alshareef HN. Nano Lett, 2016, 1: 7718–7725

    Google Scholar 

  40. Zhu L, Zheng D, Wang Z, Zheng X, Fang P, Zhu J, Yu M, Tong Y, Lu X. Adv Mater, 2018, 30: 1805268

    Google Scholar 

  41. Ji D, Fan L, Li L, Peng S, Yu D, Song J, Ramakrishna S, Guo S. Adv Mater, 2019, 31: 1808267

    Google Scholar 

  42. Ma L, Chen S, Pei Z, Li H, Wang Z, Liu Z, Tang Z, Zapien JA, Zhi C. ACS Nano, 2018, 1: 8597–8605

    Google Scholar 

  43. Zhang X, Wu S, Deng S, Wu W, Zeng Y, Xia X, Pan G, Tong Y, Lu X. Small Methods, 2019, 3: 1900525

    CAS  Google Scholar 

  44. Liu Q, Chang Z, Li Z, Zhang X. Small Methods, 2018, 2: 1700231

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Singapore MOE AcRF Tier 2 Grant (MOE2017-T2-1-073), AME Individual Research Grant (A1983c0026), and Agency for Science, Technology, and Research (A*STAR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajdeep Singh Rawat or Hong Jin Fan.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ouyang, B., Long, G. et al. Enhancing bifunctionality of CoN nanowires by Mn doping for long-lasting Zn-air batteries. Sci. China Chem. 63, 890–896 (2020). https://doi.org/10.1007/s11426-020-9739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9739-2

Keywords

Navigation