Skip to main content
Log in

Channel-independent spatially regularized discriminative correlation filter for visual object tracking

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The study proposes the improvements for visual object trackers based on discriminative correlation filters. These improvements consist in the development of the channel-independent spatially regularized method for filter calculation, which is based on the alternating direction method of multipliers as well as in the use of additional features that are the result of the backprojection of normalized weighted object histogram. The VOT Challenge 2018 benchmark has confirmed that the proposed approaches allow to increase the tracking robustness. Particularly, by the value of expected average overlap (EAO = 0.1828), the tracker that uses these approaches (CISRDCF) can reach the level of more computationally complex competitors that utilize convolutional neural features. At the same time, the software-optimized version of the CISRDCF tracker, which implements the suggested improvements has moderate computational complexity and can operate in the real-time both on the PC and on the mid-range ARM-based processors, making the CISRDCF tracker promising for embedded applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://github.com/rbgirshick/voc-dpm/blob/master/features/features.cc.

References

  1. Kristan, M., Matas, J., Leonardis, A., Felsberg, M., et al: The visual object tracking VOT2015 challenge results. In: IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 564–586 (2015). https://doi.org/10.1109/ICCVW.2015.79

  2. Matej, K., Leonardis, A., Matas, J., et al: The visual object tracking VOT2016 challenge results. In: European Conference on Computer Vision âĂŞ ECCV 2016 Workshops. ECCV 2016. Lecture Notes in Computer Science, vol. 9914, pp. 777–823 (2016). https://doi.org/10.1007/978-3-319-48881-3_54

  3. Kristan, M., Leonardis, A., Matas, J., Felsberg, M., et al: The visual object tracking VOT2017 challenge results. In: ICCV2017 Workshops, Workshop on visual object tracking challenge (2017). https://doi.org/10.1109/ICCVW.2017.230

  4. Kristan, M. , Leonardis, A., Matas, J., Felsberg, M., et al: The sixth visual object tracking VOT2018 challenge results. In: Computer Vision âĂŞ ECCV 2018 Workshops. ECCV 2018. Lecture Notes in Computer Science, vol. 11129, pp. 3–53 (2018). https://doi.org/10.1007/978-3-030-11009-3_1

  5. Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: 14th European Conference on Computer VisionâĂŞ ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol. 9909, pp. 472–488 (2016). https://doi.org/10.1007/978-3-319-46454-1_29

  6. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: efficient convolution operators for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6931–6939 (2017). https://doi.org/10.1109/CVPR.2017.733

  7. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4293–4302 (2016). https://doi.org/10.1109/CVPR.2016.465

  8. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: European Conference on Computer Vision âĂŞ ECCV 2016 Workshops. ECCV 2016. Lecture Notes in Computer Science, vol. 9914, pp. 850–865 (2016). https://doi.org/10.1007/978-3-319-48881-3_56

  9. Li, B, Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8971–8980 (2018). https://doi.org/10.1109/CVPR.2018.00935

  10. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015). https://doi.org/10.1109/TPAMI.2014.2345390

    Article  Google Scholar 

  11. Danelljan, M., HÃd’ger, G., Khan, F., Felsberg, M.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017). https://doi.org/10.1109/TPAMI.2016.2609928

    Article  Google Scholar 

  12. Danelljan, M., HÃd’ger, G., Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: IEEE International Conference on Computer Vision (ICCV), pp. 4310–4318 (2015). https://doi.org/10.1109/ICCV.2015.490

  13. Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware correlation filters for visual tracking. In: IEEE International Conference on Computer Vision (ICCV), pp. 1144–1152 (2017). https://doi.org/10.1109/ICCV.2017.129

  14. Lukežič, A., Vojíř, T., Čehovin, Z.L., Matas, J., Kristan, M.: Discriminative correlation filter tracker with channel and spatial reliability. Int. J. Comput. Vis. 126, 671–688 (2018). https://doi.org/10.1007/s11263-017-1061-3

    Article  MathSciNet  Google Scholar 

  15. van de Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009). https://doi.org/10.1109/TIP.2009.2019809

    Article  MathSciNet  MATH  Google Scholar 

  16. Danelljan, M., Khan, F.S., Felsberg, M., Weijer, J.: Adaptive color attributes for real-time visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1090–1097 (2014). https://doi.org/10.1109/CVPR.2014.143

  17. Li, Feng, Tian, C., Zuo, W., Zhang, Lei, Yang, M.-H.: Learning spatial-temporal regularized correlation filters for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4904–4913 (2018). https://doi.org/10.1109/CVPR.2018.00515

  18. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.S.: Staple: Complementary learners for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1401–1409 (2016). https://doi.org/10.1109/CVPR.2016.156

  19. Bolme, D.S., Beveridge, R.J., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960

  20. Hannuna, S., Camplani, M., Hall, J., et al.: DS-KCF: a real-time tracker for RGB-D data. J. Real-Time Image Proc. 16, 1439–1458 (2019). https://doi.org/10.1007/s11554-016-0654-3

    Article  Google Scholar 

  21. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010). https://doi.org/10.1109/TPAMI.2009.167

    Article  Google Scholar 

  22. Fernandez, J.A., Boddeti, V.N., Rodriguez, A., Kumar, B.V.K.V.: Zero-aliasing correlation filters for object recognition. IEEE Tran. Pattern Anal. Mach. Intell. 37(8), 1702–1715 (2014). https://doi.org/10.1109/TPAMI.2014.2375215

    Article  Google Scholar 

  23. Galoogahi, H.K., Sim, T., Lucey, S.: Correlation filters with limited boundaries. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4630–4638 (2015). https://doi.org/10.1109/CVPR.2015.7299094

  24. Danelljan, M., HÃd’ger, G., Khan, F., Felsberg, M.: Convolutional features for correlation filter based visual tracking. In: IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 621–629 (2015). https://doi.org/10.1109/ICCVW.2015.84

  25. Gundogdu, E., Alatan, A.A.: Good features to correlate for visual tracking. IEEE Trans. Image Proc. 27(5), 2526–2540 (2018). https://doi.org/10.1109/TIP.2018.2806280

    Article  MathSciNet  MATH  Google Scholar 

  26. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  27. Messerschmitt, D.: Stationary points of a real-valued function of a complex variable. Tech. Report No. UCB/EECS-2006-93. EECS, U.C. Berkeley (2006)

  28. Varfolomieiev, A., Lysenko, O.: Modification of the KCF tracking method for implementation on embedded hardware platforms. In; International Conference Radio Electronics & Info Communications (UkrMiCo) (2016). https://doi.org/10.1109/UkrMiCo.2016.7739644

  29. Varfolomieiev, A., Lysenko, O.: A simple way to broaden objects search area for tracking methods based on discriminative correlation filters. In IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), pp. 1149–1154 (2017). https://doi.org/10.1109/UKRCON.2017.8100430

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Varfolomieiev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfolomieiev, A. Channel-independent spatially regularized discriminative correlation filter for visual object tracking. J Real-Time Image Proc 18, 233–243 (2021). https://doi.org/10.1007/s11554-020-00967-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-00967-y

Keywords

Navigation