Skip to main content

Advertisement

Log in

Modifications of water status, growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid

  • Regular Paper – Physiology/Biochemistry/Molecular and Cellular Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) has an important role in drought-tolerance in wheat (Triticum aestivum L.) but its relevance to the salinity-tolerance is not well understood. In the present study, possible roles of SA and salinity responses were examined using two wheat cultivars i.e., drought-tolerant Sakha-69 and drought-sensitive Gemaza-1, exposed to 150 mM NaCl. Parameters were determined for growth i.e. fresh or dry mass (FM, DM), osmotic concentration (OC) of organic/inorganic solute, leaf relative water content (LRWC), photosynthesis pigment content (PPC), and selective antioxidant system (AOS) enzyme/molecule that might be involved in the stress remediation. Sakha-69 exhibited salinity tolerance greater than Gemaza-1 and SA ameliorated their salinity stresses like drought stress, suggesting that a common tolerant mechanism might be involved in the stresses. Salinity decreased root growth by 44–52% more strongly than shoot (36–41%) in FM or those in DM (32–35%). SA ameliorated root growth (40–60%) more efficiently than shoot (6–24%) for DM/FM. These results suggested that salinity and SA might target sensitive roots and hence influencing shoot functions. In fact, salinity reduced PPC by 10–18%, LRWC by 16–28%, and more sensitively, OC of inorganic solutes (K+, Ca2+, Mg2+) in shoot (19–36%) and root (25–59%), except a conspicuous increase in Na+, and SA recovered all the reductions near to control levels. SA and salinity increased additively most parameters for OC of organic solutes (sugars and organic acids) and AOS (glutathione and related enzyme activities), like drought responses. However, SA decreased the Na+ and proline contents and catalase activity in a counteracting manner to salinity. It is concluded from this experiment that SA-mediated tolerance might involve two mechanisms, one specific for minerals in root and the other related to drought/dehydration tolerance governed in the whole module systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adam AL, Bestwick CS, Barna B, Mansfield JW (1995) Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. Phaseolicola Planta 197:240–249

    CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Al-Naggar AMM, Sabry SRS, Atta MMM, El-Aleem OMA (2015) Effects of salinity on performance, heritability, selection gain and correlations in wheat (Triticum aestivum L.) doubled haploids. Scientia Agriculturae 10:70–83

    CAS  Google Scholar 

  • Azooz MM, Youssef AM, Ahmad P (2011) Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int J Plant Physiol Biochem 3:253–264

    CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Boukraâ D, Benabdelli K, Belabid L, Bennabi F (2013) Effect of salinity on chickpea seed germination pre-treated with salicylic acid. Sci J Biol Sci 2:86–93

    Google Scholar 

  • Delavari PM, Baghizadeh A, Enteshari SH, Kalantari KM, Yazdanpanah A, Mousavi EA (2010) The effects of salicylic acid on some of biochemical and morphological characteristic of Ocimum basilicucm under salinity stress. Aust J Basic Appl Sci 4:4832–4845

    CAS  Google Scholar 

  • Dong C, Wang X, Shang Q (2011) Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Scitia Horti 129:629–636

    Article  CAS  Google Scholar 

  • El-Beltagi H, Ahmed S, Namich SH, Abdel-Sattar AA (2017) Effect of salicylic acid and potassium citrate on cotton plant under salt stress. Fresenius Environ Bull 26:1019–1100

    Google Scholar 

  • Essa TA (2002) Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J Agron Crop Sci 188:86–93

    Article  CAS  Google Scholar 

  • Franco AC, Ball E, Luttge U (1992) Differential effects of drought and light levels on accumulation of citric acids during CAM in Clusia. Plant Cell Environ 15:21–829

    Article  Google Scholar 

  • Ghassemi-Golezani K, Lotfi R (2015) The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. Russ J Plant Physiol 62:611–616

    Article  CAS  Google Scholar 

  • Golldack D, Li C, Harikrishnan M, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  CAS  Google Scholar 

  • Gressel J, Galun E (1994) Genetic controls of photooxidant tolerante. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defence systems in plants. Taylor & Francis Inc, CRC Press, Boca Raton, pp 237–273

    Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  CAS  PubMed  Google Scholar 

  • Hafsi C, Romero-Puerta MC, Gupta DK, del Rio LA, Sandalio LM, Abdelly C (2010) Moderate salinity enhances the antioxidative response in the halophyte Hordeum maritimum L. under potassium deficiency. Environ Exp Bot 69:129–136

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • He Y, Liu Y, Cao W, Huai M, Xu B, Huang B (2005) Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Amer J Crop Sci 45:988–995

    Article  CAS  Google Scholar 

  • Isayenkov S, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00080

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel A, Shabala S (2015) Slicylic acid in plant salinity stresss signaling and tolerance. Plant Growth Regul. https://doi.org/10.1007/s10725-015-0028-z

    Article  Google Scholar 

  • Jini D, Joseph B (2017) Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci 24:97–108

    Article  Google Scholar 

  • Karlidag H, Yildirim E, Turan M (2009) Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci Agric 66:180–187

    Article  CAS  Google Scholar 

  • Khan N, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mung bean and alleviates adverse effects of salinity stress. Int J Plant Biol 1:1–8

    Article  CAS  Google Scholar 

  • Khan MIK, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Li T, Hu YY, Du XH, Tang H, Shen CH, Wu JS (2014) Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS ONE 9:e109492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu W, Zhang Y, Yuan X, Xuan Y, Gao Y, Yan Y (2016) Exogenous salicylic acid improves salinity tolerance of Nitraria tangutorum. Russ J Plant Physiol 63:132–142

    Article  CAS  Google Scholar 

  • Loutfy N, El-Tayeb MA, Hassanen AM, Moustafa MFM, Sakuma Y, Inouhe M (2012) Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum L.). J Plant Res 125:173–184

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zheng J, Zhang X, Hu Q, Qian R (2017) Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front Plant Sci 8:600

    Article  PubMed  PubMed Central  Google Scholar 

  • MacInnes J (2017) An introduction to secondary data analysis with IBM SPSS statistics. Sage Publications Ltd, Los Angeles, p 2017

    Google Scholar 

  • Manaa A, Gharbi E, Mimouni H, Wasti S, Aschi-Smiti S, Lutts S, Ben Ahmed H (2014) Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. S Afr J Bot 95:32–39

    Article  CAS  Google Scholar 

  • Mariani L, Ferrante A (2017) Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulture 3:52

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, New York. ISBN: 9780124735439

  • Metzner H, Rau H, Senger H (1965) Untersuchunge zur synchronisierbarkarkeit einzelner- pigmentmangle- mutanten von chlorella. Planta 65:186–194

    Article  CAS  Google Scholar 

  • Milad SI, El-Banna MN, El-Sheikh MH, Ebaid ME (2013) Effect of genotypes and medium protocols on callus formation and plant regeneration from mature embryos of Egyptian wheat (Triticum aestivum L.) varieties. Int J Adv Agric Res 18:874–889

    Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stresss responses by salicylic acid. Front Plant Sci 5(4):1–12. https://doi.org/10.3389/fpls.2014.00004

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. J Plant Physiol 168:807–815

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Umar S, Khan NA (2015) Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav 10:e1003751–e1003810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Negrao S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  CAS  PubMed  Google Scholar 

  • Neoclous D, Koukounaras A, Siomos AS, Vasilakakis M (2014) Assessing the salinity effects on mineral composition and nutritional quality of green and red baby lettuce. J Food Qual 37:1–8

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • O’Brien RG, Kaiser MK (1985) MANOVA method for analyzing repeated measures designs: An extensive primer. Psychol Bull 97:316–333

    Article  PubMed  Google Scholar 

  • Poor P, Gemes K, Szepesi A, Horvath F, Simon ML, Tari I (2011) Salicylic acid treatment via the rooting medium interferes with the stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato and decreases the harmful effects of subsequent salt stress. Plant Biol 13:105–114

    Article  CAS  PubMed  Google Scholar 

  • Rady MM, Mohamed CF (2015) Modulation of salt stress effects on the growth, physio chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci Hortic 193:105–113

    Article  CAS  Google Scholar 

  • Sadak MS, Orabi SA (2015) Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. Int J Chem Tech Res 8:333–345

    CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiological and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Salem WM, Abu Alhamd MF (2009) Alteration in seedling growth and antioxidant enzyme activities in Lupinus termis under the influence of H2O2 with native Azotobacter sp. strain. Egypt J Bot 49:35–51

    Google Scholar 

  • Samaras Y, Bressan RA, Csonka LN, Garcia-Rios M, Paino D, Urzo M, Rhodes D (1994) Proline accumulation during drought and salinity. In: Smirnoff N (ed) Environment and plant metabolism: flexibility and acclimation. BIOS Scientific Publisher, Oxford, pp 161-187. ISBN 1-872748-93-7

  • Shao QS, Wang HZ, Guo HP, Zhou AC, Huang YQ, Sun YL (2014) Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. PLoS ONE 9:e85996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shim IS, Momose Y, Yamamoto A, Kim DW, Usui K (2003) Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul 39:285–292

    Article  CAS  Google Scholar 

  • Silva EC, Nogueira RJMC, Silva MA, Albuquerque MB (2011) Drought stress and plant nutrition. Plant Stress 5 (Special Issue 1):32–41. Global Science Books, Print ISSN: 1749–0359

  • Singh H, Singh AS, Hussain I, Yadav V (2016) Physiological and biochemical effects of salicylic acid on Pisum sativum exposed to isoproturon. Arch Agron Soil Sci 62:1425–1436

    Article  CAS  Google Scholar 

  • Tawussi F, Walther C, Gupta DK (2017) Does low uranium concentration generates phytotoxic symptoms in Pisum sativum L. in nutrient medium? Environ Sci Pollut Res 24:22741–22751

    Article  CAS  Google Scholar 

  • Timpa JD, Burke JJ, Quisenberry JE, Wendt CW (1986) Effects of water stress on the organic acid carbohydrate compositions of cotton plants. Plant Physiol 82:724–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuna L, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin R (2008) Resistance gene stacking in wheat breeding programs and further genetic analysis. Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16

    Article  CAS  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multi-faceted hormone to combat disease. Annu Rev Phytopathol 47:177–206. https://doi.org/10.1146/annurev.phyto.050908.135202

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang Q (2017) Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum). Ecotox Environ Saf 137:218–224

    Article  CAS  Google Scholar 

  • Yamasaki S, Dillenburg LR (1999) Measurements of leaf relative water content in Araucaria angustifolia. R Bras Fisiol Veg 11:69–75

    Google Scholar 

  • Yildirim E, Turan M, Guvenc I (2008) Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber (Cucumis sativus L.) grown under salt stress. J Plant Nutr 31:593–612

    Article  CAS  Google Scholar 

  • Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin O, Ahmad A (2008) Effect of salicylic acid on salinity-induced changes in Brassica juncea. J Integr Plant Biol 50:1096–1102

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Inouhe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 91 kb)

Supplementary file2 (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loutfy, N., Sakuma, Y., Gupta, D.K. et al. Modifications of water status, growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid. J Plant Res 133, 549–570 (2020). https://doi.org/10.1007/s10265-020-01196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01196-x

Keywords

Navigation