Skip to main content
Log in

Long-term continuously monocropped peanut significantly disturbed the balance of soil fungal communities

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Balancing soil microbial diversity and abundance is critical to sustaining soil health, and understanding the dynamics of soil microbes in a monocropping system can help determine how continuous monocropping practices induce soil sickness mediated by microorganisms. This study used previously constructed gradient continuous monocropping plots and four varieties with different monocropping responses were investigated. The feedback responses of their soil fungal communities to short-term and long-term continuous monocropping were tracked using high-throughput sequencing techniques. The analyses indicated that soil samples from 1 and 2 year monocropped plots were grouped into one class, and samples from the 11 and 12 year plots were grouped into another, regardless of variety. At the species level, the F. solani, Fusarium oxysporum, Neocosmospora striata, Acrophialophora levis, Aspergillus niger, Aspergillus corrugatus, Thielavia hyrcaniae, Emericellopsis minima, and Scedosporium aurantiacum taxa showed significantly increased abundances in the long-term monocropping libraries compared to the short-term cropping libraries. In contrast, Talaromyces flavus, Talaromyces purpureogenus, Mortierella alpina, Paranamyces uniporus, and Volutella citrinella decreased in the long-term monocropping libraries compared to the short-term libraries. This study, combined with our previous study, showed that fungal community structure was significantly affected by the length of the monocropping period, but peanut variety and growth stages were less important. The increase in pathogen abundances and the decrease in beneficial fungi abundances seem to be the main cause for the yield decline and poor growth of long-term monocultured peanut. Simplification of fungal community diversity could also contribute to peanut soil sickness under long-term monocropping. Additionally, the different responses of peanut varieties to monocropping may be related to variations in their microbial community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avidano, L., Gamalero, E., Cossa, G.P., and Carraro, E. 2005. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl. Soil Ecol.30, 21–33.

    Google Scholar 

  • Bai, L., Cui, J., Jie, W., and Cai, B. 2015. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields. Microbiol. Res.180, 49–56.

    PubMed  Google Scholar 

  • Berendsen, R.L., Pieterse, C.M., and Bakker, P.A. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci.17, 478–486.

    CAS  PubMed  Google Scholar 

  • Bever, J.D., Platt, T.G., and Morton, E.R. 2012. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol.66, 265–283.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya, P.N. and Jha, D.K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol.28, 1327–1350.

    CAS  PubMed  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods7, 335–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, M., Chi, X., Pan, L., Chen, N., Wang, T., Wang, M., Yang, Z., and Yu, S. 2016. Research progress of soil microenvironment and peanut continuous cropping obstacle mechanism. J. Anhui Agri. Sci.44, 33–35.

    Google Scholar 

  • Chen, M., Li, X., Yang, Q., Chi, X., Pan, L., Chen, N., Yang, Z., Wang, T., Wang, M., and Yu, S. 2012. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut-pathogenic and beneficial fungi were selected. PLoS One7, e40659.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, M., Li, X., Yang, Q., Chi, X., Pan, L., Chen, N., Yang, Z., Wang, T., Wang, M., and Yu, S. 2014. Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L.). PLoS One9, e101355.

    PubMed  PubMed Central  Google Scholar 

  • Cook, R.J. 2006. Toward cropping systems that enhance productivity and sustainability. Proc. Nat. Acad. Sci. USA103, 18389–18394.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods10, 996–998.

    CAS  PubMed  Google Scholar 

  • Gentry, L.F., Ruffo, M.L., and Below, F.E. 2013. Identifying factors controlling the continuous corn yield penalty. Agron. J.105, 295–303.

    Google Scholar 

  • Ghayal, N., Taware, P., Dhumal, K., and Hase, C. 2011. Influence of sugarcane monocropping on rhizosphere microflora, soil enzymes and NPK status. Int. J. Pharma. Bio Sci.2, B188–B202.

    Google Scholar 

  • Ho, A., Angel, R., Veraart, A.J., Daebeler, A., Jia, Z., Kim, S.Y., Kerckhof, F.M., Boon, N., and Bodelier, P.L.E. 2016. Biotic interactions in microbial communities as modulators of biogeochemical processes: methanotrophy as a model system. Front. Microbiol.7, 1285.

    PubMed  PubMed Central  Google Scholar 

  • Jiao, K., Chen, M., Pan, L., Chi, X., Chen, N., Wang, T., Wang, M., Yang, Z., and Yu, S. 2015. Effect of long term continuous cropping on the growth, yield and quality of different peanut varieties. Chinese Agr. Sci. Bull.31, 44–51.

    Google Scholar 

  • Leslie, J.F. and Summerell, B.A. 2013. An overview of Fusarium. In Brown, D.W., Robert, H., and Proctor, R.O. (eds.), pp. 1–9. Fusarium: Genomics, Molecular and Cellular Biology, Caister Academic Press.

  • Li, P., Dai, C., Wang, X., Zhang, T., and Chen, Y. 2012. Variation of soil enzyme activities and microbial community structure in peanut monocropping system in subtropical China. Afr. J. Agric. Res.7, 1870–1879.

    Google Scholar 

  • Li, X., Ding, C., Hua, K., Zhang, T., Zhang, Y., Zhao, L., Yang, Y., Liu, J., and Wang, X. 2014a. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biol. Biochem.78, 149–159.

    CAS  Google Scholar 

  • Li, X., Ding, C., Zhang, T., and Wang, X. 2014b. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol. Biochem.72, 11–18.

    CAS  Google Scholar 

  • Liu, X., Li, Y., Han, B., Zhang, Q., Zhou, K., Zhang, X., and Hashemi, M. 2012. Yield response of continuous soybean to one-season crop disturbance in a previous continuous soybean field in Northeast China. Field Crops Res.138, 52–56.

    Google Scholar 

  • Liu, W., Wang, Q., Wang, B., Wang, X., Franks, A.E., Teng, Y., Li, Z., and Luo, Y. 2015a. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system. Plant Soil395, 415–427.

    CAS  Google Scholar 

  • Liu, P., Zhao, H., Tang, Z., Zhang, Y., Lin, H., Shen, Y., Wang, J., and Wan, S. 2015b. Effects of continuous cropping on root exudates of different resistance peanut (Arachis hypogaea L.) varieties and allelochemicals content in soil. Chin. J. Oil Crop Sci.4, 467–474.

    Google Scholar 

  • Naraghi, L., Heydari, A., Rezaee, S., Razavi, M., and Afshari-Azad, H. 2010a. Biological control of Verticillium wilt of greenhouse cucumber by Talaromyces flavus. Phytopathol. Mediterr.49, 321–329.

    Google Scholar 

  • Naraghi, L., Heydari, A., Rezaee, S., Razavi, M., Jahanifar, H., and Khaledi, E. 2010b. Biological control of tomato Verticillium wilt disease by Talaromyces flavus. J. Plant Protect. Res.50, 360–365.

    Google Scholar 

  • Narendra, K., Deepika, K., Sapna, S., Rashmi, A., and Khurana, S.M.P. 2016. First record of Acrophialophora levis causing wilt of Plumeria in Gurgaon. Indian Phytopathol.69, 400–406.

    Google Scholar 

  • National Bureau of Statistics of China. 2018. China statistical yearbook 2018. China Statistics Press, Beijing, P. R. China.

    Google Scholar 

  • Noble, R. and Coventry, E. 2005, Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci. Technol.15, 3–20.

    Google Scholar 

  • Ojaghian, M.R. 2011. Potential of Trichoderma spp. and Talaromyces flavus for biological control of potato stem rot caused by Sclerotinia sclerotiorum. Phytoparasitica39, 185–193.

    Google Scholar 

  • Rojo, F.G., Reynoso, M.M., Ferez, M., Chulze, S., and Torres, A.M. 2007. Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Prot.26, 549–555.

    Google Scholar 

  • Sang, H., Witte, A., Jacobs, J.L., Chang, H.X., Wang, J., Roth, M.G., and Chilvers, M.I. 2018. Fluopyram sensitivity and functional characterization of SdhB in the Fusarium solani species complex causing soybean sudden death syndrome. Front. Microbiol.9, 2335.

    PubMed  PubMed Central  Google Scholar 

  • Santhanam, R., Luu, V.T., Weinhold, A., Goldberg, J., Oh, Y., and Baldwin, I.T. 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc. Natl. Acad. Sci. USA112, E5013–E5020.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, R. 2012. Pathogenicity of Aspergillus niger in plants. Cibtech J. Microbiol.1, 47–51.

    Google Scholar 

  • Shipton, P.J. 1977. Monoculture and soilborne plant pathogens. Ann. Rev. Phytopathol.15, 387–407.

    Google Scholar 

  • Sichel, C., de Cara, M., Tello, J., Blanco, J., and Fernández-Ibáñez, P. 2007. Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl. Catal. B74, 152–160.

    CAS  Google Scholar 

  • Song, A., Zhao, S., Chen, S., Jiang, J., Chen, S., Li, H., Chen, Y., Chen, X., Fang, W., and Chen, F. 2013. The abundance and diversity of soil fungi in continuously monocropped chrysanthemum. Sci. World J.2013, 632920.

    Google Scholar 

  • Sun, W.M., Feng, L.N., Guo, W., Liu, D.Q., Yang, Z.H., Liu, L.F., Ran, L.X., and Meng, Q.F. 2012. First report of Neocosmospora striata causing peanut pod rot in China. Plant Dis.96, 146.

    CAS  PubMed  Google Scholar 

  • Van der Putten, W.H., Bardgett, R.D., Bever, J.D., Bezemer, T.M., Casper, B.B., Fukami, T., Kardol, P., Kilronomos, J.N., Kulmatiski, A., Schweitzer, J.A., et al. 2013. Plant-soil feedbacks: the past, the present and future challenges. J. Ecol.101, 265–276.

    Google Scholar 

  • van Elsas, J.D., Jansson, J.K., and Trevors, J.T. 2006. Modern soil microbiology, 2nd edn. CRC Press, Hoboken, New Jersey, USA.

    Google Scholar 

  • Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J.R., and Hart, M. 2016. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev.36, 48.

    Google Scholar 

  • Wang, M.Z. and Chen, X.N. 2005. Obstacle and countermeasure of sustainable high yield for peanut in low-hilly red soil region. J. Peanut Sci.34, 17–22.

    CAS  Google Scholar 

  • Wu, L., Chen, J., Wu, H., Wang, J., Wu, Y., Lin, S., Khan, M.U., Zhang, Z., and Lin, W. 2016. Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing. Sci. Rep.6, 26601.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, L., Wang, J., Huang, W., Wu, H., Chen, J., Yang, Y., Zhang, Z., and Lin, W. 2015. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture. Sci. Rep.5, 15871.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, W., Zhao, Q., Xue, C., Xun, W., Zhao, J., Wu, H., Li, R., and Shen, Q. 2016. Comparison of fungal community in black pepper-vanilla and vanilla monoculture systems associated with vanilla Fusarium wilt disease. Front. Microbiol.7, 117.

    PubMed  PubMed Central  Google Scholar 

  • Xu, X., Passey, T., Wei, F., Saville, R., and Harrison, R.J. 2015. Amplicon-based metagenomics identified candidate organisms in soils that caused yield decline in strawberry. Hortic. Res.2, 15022.

    PubMed  PubMed Central  Google Scholar 

  • Yamagiwa, Y., Inagaki, Y., Ichinose, Y., Toyoda, K., Hyakumachi, M., and Shiraishi, T. 2011. Talaromyces wortmannii FS2 emits β-caryphyllene, which promotes plant growth and induces resistance. J. Gen. Plant Pathol.77, 336–341.

    CAS  Google Scholar 

  • Zhou, X., Liu, J., and Wu, F. 2017. Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant Soil415, 507–520.

    CAS  Google Scholar 

  • Zhou, X., Wang, Z., Jia, H., Li, L., and Wu, F. 2018. Continuously monocropped Jerusalem artichoke changed soil bacterial community composition and ammonia-oxidizing and denitrifying bacteria abundances. Front. Microbiol.9, 705.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, X.G. and Wu, F.Z. 2012. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol. Ecol.80, 469–478.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by China Agriculture Research System (CARS-13), Taishan Scholar Project Funding, the National Natural Science Foundation of China (31701464), the Natural Science Fund of Shangdong Province (ZR2017-YL017), the Youth Scientific Research Foundation of Shandong Academy of Agricultural Sciences (2016YQN14), Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences (CXGC2016B02, CXGC2018E21), the Breeding Project from Department Science & Technology of Shandong Province (2017LZGC003), Qingdao people’s livelihood Science and technology plan project (19-6-1-61-nsh).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyuan Chi or Binghai Du.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhang, J., Liu, H. et al. Long-term continuously monocropped peanut significantly disturbed the balance of soil fungal communities. J Microbiol. 58, 563–573 (2020). https://doi.org/10.1007/s12275-020-9573-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9573-x

Keywords

Navigation