Skip to main content
Log in

Complexing properties of pyrenyl-appended calix[4]arenes towards lanthanides and transition metal cations

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The binding properties of pyrenyl-appended calix[4]arenes 2–4 towards lanthanide and transition metal cations were investigated by spectrophotometric data processing, which indicated that 2 forms mononuclear species with all the cations studied. The extraction power decreased toward ligands 23 except Co2+, then increased for ligand 4, which reflect the better ability of ligands 2 and 4 to complex and extract at the interface. Derivative 3 formed mono and binuclear species simultaneously with the trivalent cations from La3+ to Er3+ but only M2L species with Yb3+. In the case of 4, only M3L was detected for Yb3+ and only ML for La3+, with the complexation of the other cations tending to form mono-, bi- and tri-nuclear species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar, R., Sharma, A., Singh, H., Suating, P., Kim, H.S., Sunwoo, K., Shim, I., Gibb, B.C., Kim, J.S.: Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chem. Rev. 119(16), 9657–9721 (2019)

    Article  CAS  Google Scholar 

  2. Iuliano, V., Talotta, C., Gaeta, C., Soriente, A., De Rosa, M., Geremia, S., Hickey, N., Mennucci, B., Neri, P.: Negative solvatochromism in a N-linked p-pyridiniumcalix[4]arene derivative. Org. Lett. 21(8), 2704–2707 (2019)

    Article  CAS  Google Scholar 

  3. Kumar, S., Kaur, J., Verma, A., Mukesh Kumar, A., Dominic, S.: Influence of polyether chain on the non-covalent interactions and stability of the conformers of calix[4]crown ethers. J. Incl. Phenom. Macrocycl. Chem. 91(1–2), 81–93 (2018)

    Article  CAS  Google Scholar 

  4. Ovsyannikov, A., Solovieva, S., Antipin, I., Ferlay, S.: Coordination polymers based on calixarene derivatives: structures and properties. Coord. Chem. Rev. 352, 151–186 (2017)

    Article  CAS  Google Scholar 

  5. Lou, X.Y., Song, N., Yang, Y.W.: Fluorescence resonance energy transfer systems in supramolecular macrocyclic chemistry. Molecules 22(10), 1640 (2017)

    Article  CAS  Google Scholar 

  6. Baldini, L., Casnati, A., Sansone, F.: Comprehensive supramolecular chemistry II. In: Baldini, L. (ed.) Biomacromolecule Recognition by Calixarene Macrocycles, vol. 4, pp. 371–408. Elsevier, New York (2017)

    Google Scholar 

  7. Yoshida, K., Fujii, S., Takahashi, R., Matsumoto, S., Sakurai, K.: Self-assembly of calix[4]arene-based amphiphiles bearing polyethylene glycols: another example of “Platonic Micelles”. Langmuir 33(36), 9122–9128 (2017)

    Article  CAS  Google Scholar 

  8. Redshaw, C.: Metallocalixarene catalysts: α-olefin polymerization and ROP of cyclic esters. Dalton Trans. 45(22), 9018–9030 (2016)

    Article  CAS  Google Scholar 

  9. Gangemi, C.M.A., Pappalardo, A., Sfrazzetto, G.T.: Assembling of supramolecular capsules with resorcin[4]arene and calix[n]arene building blocks. Curr. Org. Chem. 19(23), 2281–2308 (2015)

    Article  CAS  Google Scholar 

  10. Rodik, R.V., Klymchenko, A.S., Mely, Y., Kalchenko, V.I.: Calixarenes and related macrocycles as gene delivery vehicles. J. Incl. Phenom. Macrocycl. Chem. 80(3–4), 189–200 (2014)

    Article  CAS  Google Scholar 

  11. Nimse, S.B., Kim, T.: Biological applications of functionalized calixarenes. Chem. Soc. Rev. 42(1), 366–386 (2013)

    Article  CAS  Google Scholar 

  12. Mokhtari, B., Pourabdollah, K.: Application of calixarenes in development of sensors. Asian J. Chem. 25(1), 1–12 (2013)

    Article  CAS  Google Scholar 

  13. Yang, Y., Zhao, Q., Feng, W., Li, F.: Luminescent chemodosimeters for bioimaging. Chem. Rev. 113(1), 192–270 (2013)

    Article  CAS  Google Scholar 

  14. Asfari, Z., Böhmer, V., Harrowfield, J.M., Vicens, J. (eds.): Calixarenes 2001. Kluwer Academic, Dordercht (2001)

    Google Scholar 

  15. Thuéry, P., Nierlich, M., Lamare, É., Dozol, J.-F., Asfari, Z., Vicens, J.: Bis(crown ether) and azobenzocrown derivatives of calix[4]arene. A review of structural information from crystallographic and modelling studies. J. Incl. Phenom. Macrocycl. Chem. 36(4), 375–408 (2000)

    Article  Google Scholar 

  16. Oueslati, I.: Calix(aza)crowns: synthesis, recognition, and coordination. A mini review. Tetrahedron 63(44), 10840–10851 (2007)

    Article  CAS  Google Scholar 

  17. Pulpoka, B., Ruangpomvisuti, V., Asfari, Z., Vicens, J.: In: Takemura, H. (ed.) Cyclophane Chemistry for the 21st century, Chapter 3. Research Signpost, Kerala (2002)

  18. Li, J.-S., Chen, Y.-Y., Lu, X.-R.: Syntheses of novel tripodal calix[n]cryptands (n = 4, 6) and their extraction abilities toward cations. Eur. J. Org. Chem. 2000(3), 485–490 (2000)

    Article  Google Scholar 

  19. Ballester, P.: Anion binding in covalent and self-assembled molecular capsules. Chem. Soc. Rev. 39(10), 3810 (2010)

    Article  CAS  Google Scholar 

  20. Zeng, X., Bornholdt, C., Over, D., Reinaud, O.: Synthesis of “Two-Story” calix[6]aza-cryptands. Org. Lett. 13(20), 5660–5663 (2011)

    Article  CAS  Google Scholar 

  21. Reinhoudt, D.N., Dijkstra, P.J., Veld, P.J.A., Bugge, K.E., Harkema, S., Ungaro, R., Ghidini, E.: Kinetically stable complexes of alkali cations with rigidified calix[4]arenes. X-ray structure of calixspherand sodium picrate complex. J. Am. Chem. Soc. 109(15), 4761–4762 (1987)

    Article  CAS  Google Scholar 

  22. Vicens, J., Asfari, Z., Harrowfield, J.M. (eds.): Calixarenes 50th Anniversary: Commemorative Issue. Springer, Dordrecht (1994)

    Google Scholar 

  23. Agbaria, K., Biali, S.E., Böhmer, V., Brenn, J., Cohen, S., Frings, M., Grynszpan, F., Harrowfield, J.M., Sobolev, A.N., Thondorf, I.: Stereochemistry of a spherand-type calixarene. J. Org. Chem. 66(9), 2900–2906 (2001)

    Article  CAS  Google Scholar 

  24. Neri, P., Sessler, J.L., Wang, M.-X.: Calixarenes and Beyond. Springer, Cham (2016)

    Book  Google Scholar 

  25. Mellah, B., Lee, Y.H., Kim, D.I., Cho, J.H., Kim, Y.: Synthesis of first-generation calix-dendrimer from 1,3,5-tris(aminomethyl)-2,4,6-trimethylbenzene and p-tert-butylcalix[4]arene monomethyl ester. J. Incl. Phenom. Macrocycl. Chem. 82(1–2), 279–282 (2015)

    Article  CAS  Google Scholar 

  26. Gutsche, C.D.: Calixarenes: An Introduction. RSC Publishing, Cambridge (2008)

    Google Scholar 

  27. Cheriaa, N., Abidi, R., Vicens, J.: Hyperbranched molecules based on calixarenes. Tetrahedron Lett. 45(41), 7795–7799 (2004)

    Article  CAS  Google Scholar 

  28. Othman, A.B., Lee, J.W., Huh, Y.D., Abidi, R., Kim, J.S., Vicens, J.: A novel pyrenyl-appended tricalix[4]arene for fluorescence-sensing of Al(III). Tetrahedron 63(44), 10793–10800 (2007)

    Article  CAS  Google Scholar 

  29. Lhoták, P.: Chemistry of thiacalixarenes. Eur. J. Org. Chem. 2004(8), 1675–1692 (2004)

    Article  CAS  Google Scholar 

  30. Morohashi, N., Narumi, F., Iki, N., Hattori, T., Miyano, S.: Thiacalixarenes. Chem Rev. 106(12), 5291–5316 (2006)

    Article  CAS  Google Scholar 

  31. Kumar, R., Lee, Y.O., Bhalla, V., Kumar, M., Kim, J.S.: Recent developments of thiacalixarene based molecular motifs. Chem. Soc. Rev. 43(13), 4824 (2014)

    Article  CAS  Google Scholar 

  32. Wang, J., Gutsche, C.D.: Tricalixarenes and pentacalixarenes: synthesis and complexation studies. J. Org. Chem. 67(13), 4423–4429 (2002)

    Article  CAS  Google Scholar 

  33. Štastný, V., Stibor, I., Dvořáková, H., Lhoták, P.: Synthesis of (thia)calix[4]arene oligomers: towards calixarene-based dendrimers. Tetrahedron 60(15), 3383–3391 (2004)

    Article  CAS  Google Scholar 

  34. Baklouti, L., Cheriaa, N., Maouhachi, M., Abidi, R., Kim, J.S., Kim, Y., Vicens, J.: Calixarene-based dendrimers. A timely review. J. Incl. Phenom. Macrocycl. Chem. 54(1–2), 1–7 (2006)

    Article  CAS  Google Scholar 

  35. Cheriaa, N., Mahouachi, M., Othman, A.B., Baklouti, L., Kim, Y., Abidi, R., Vicens, J.: A new approach to dendrimers made from p-tert-butyl calix[4]arenes. Supramol. Chem. 18(3), 265–271 (2006)

    Article  CAS  Google Scholar 

  36. Casnati, A., Pochini, A., Ungaro, R., Ugozzoli, F., Arnaud, F., Fanni, S., Schwing, M.-J., Egberink, R.J.M., Jong, F., Reinhoudt, D.N.: Synthesis, complexation, and membrane transport studies of 1,3-alternate calix[4]arene-crown-6 conformers: a new class of cesium selective ionophores. J. Am. Chem. Soc. 117(10), 2767–2777 (1995)

    Article  CAS  Google Scholar 

  37. Frensdorff, H.K.: Salt complexes of cyclic polyethers. Distribution equilibriums. J. Am. Chem. Soc. 93(19), 4684–4688 (1971)

    Article  CAS  Google Scholar 

  38. Noamane, M.H., Othmen, A.B., Al-Ayed, A.S., Kim, Y., Hayami, S., Hamdi, A.: Interaction of 2-furanylmethyl- and 2-thienylmethyl-amide derivatives of 1,3-di(carboxymethyl)calix[4]arene with metal salts. J. Incl. Phenom. Macrocycl. Chem. 94(3–4), 249–256 (2019)

    Article  CAS  Google Scholar 

  39. Pfeil, A., Lehn, J.-M.: Helicate self-organisation: positive cooperativity in the self-assembly of double-helical metal complexes. J. Chem. Soc. Chem. Commun. (1992). https://doi.org/10.1039/C39920000838

    Article  Google Scholar 

  40. Sillén, L.G., Warnquist, B.: High speed computers as a supplement to graphical methods. Ark. Kemi. 31, 377 (1968)

    Google Scholar 

  41. Leggett, D.J.: The determination of formation constants. In: Leggett, D.J. (ed.) Computational Methods for the Determination of Formation Constants. Plenum Press, New York (1985)

    Chapter  Google Scholar 

  42. Pearson, R.G.: Hard and Soft Acids and Bases - The Evolution of a Chemical Concept. Coord. Chem. Rev. 100, 403–425 (1990)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besma Mellah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A.B., Mellah, B., Abidi, R. et al. Complexing properties of pyrenyl-appended calix[4]arenes towards lanthanides and transition metal cations. J Incl Phenom Macrocycl Chem 97, 187–194 (2020). https://doi.org/10.1007/s10847-020-00993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-00993-0

Keywords

Navigation