Skip to main content
Log in

Influence of calcium nanoparticles (CaNPs) on nutritional qualities, radical scavenging attributes of Moringa oleifera and risk assessments on human health

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study investigated stimulatory potentials of zero-charged calcium nanoparticles (CaNPs) on nutritional contents and free radical scavenging abilities of Moringa oleifera. M. oleifera seeds were planted on soil wetted with water (control: group A), 100 mgL−1 Ca(NO3)2, 100, 75 and 50 mgL−1 CaNPs as groups B, C, D and E respectively. Elemental compositions were determined with inductively coupled plasma optical emission spectrometer (ICP-OES). CaNPs beneficially improved crude fibre, ash, K and Ca by 124.82, 152.5, 10.66 and 28.91% respectively in M. oleifera. There were significant declines in concentrations of Na, Ni, Pb, Cd and Cr in M. oleifera planted on CaNPs amended soil. CaNPs significantly improved free radical scavenging ability from 43.85 to 74.06%, phenolic contents from 248.82 to 555.88 mg quercetin/g and flavonoid contents from 120.75 to 148.08 mg quercetin/g. Reduction in oxidative stress biomarker (MDA) from 1.83 to 1.54 mmolg−1 in M. oleifera planted on CaNPs amended soil was also recorded. Strong correlations among essential mineral pairs indicate M. oleifera is a source of multiple mineral nutrients and a poor source of toxic heavy metals. Results of estimated daily intake of mineral nutrients and toxic hazard quotients of heavy metals suggest M. oleifera planted on CaNPs as the safest for consumption with respect to heavy metal toxicity. Lifetime risk assessment reveals a 50% reduction in cancer risk from consumption of M. oleifera planted on CaNPs soil. Thus, it is evidently clear from results of this study that CaNPs enhanced nutritional quality of M. oleifera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I.O. Adisa, V.L.R. Pullagurala, J.R. Peralta-Videa, C.O. Apa, W.H. Elmer, J.L. Gardea-Torresdey, J.C. White, Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci. 6, 2002–2030 (2019)

    CAS  Google Scholar 

  2. L. Azeez, A. Lateef, A.A. Wahab, M.A. Rufai, A.K. Salau, E.I.O. Ajayi, M. Ajayi, M.K. Adegbite, B. Adebisi, Phytomodulatory effects of silver nanoparticles on Corchorus olitorius: its antiphytopathogenic and hepatoprotective potentials. Plant Physiol. Biochem. 136, 109–117 (2019)

    Article  CAS  Google Scholar 

  3. L. Azeez, A.L. Adejumo, A. Lateef, S.A. Adebisi, R.O. Adetoro, S. Adewuyi, K.O. Tijani, S. Olaoye, Zero-valent silver nanoparticles attenuate Cd and Pb toxicities on Moringa oleifera via immobilization and induction of phytochemicals. Plant Physiol. Biochem. 139, 283–292 (2019)

    Article  CAS  Google Scholar 

  4. A. Juárez-Maldonado, H. Ortega-Ortíz, A.B. Morales-Díaz, S. González-Morales, A. Morelos-Moreno, M. Cabrera-De la Fuente, A. Sandoval-Rangel, G. Cadenas-Pliego, A. Benavides-Mendoza, Nanoparticles and nanomaterials as plant biostimulants. Int. J. Mol. Sci. 20, 162 (2019). https://doi.org/10.3390/ijms20010162

    Article  CAS  PubMed Central  Google Scholar 

  5. F.J. Cunningham, N.S. Goh, G.S. Demirer, J.L. Matos, M.P. Landry, Nanoparticle mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 36(9), 882–897 (2018)

    Article  CAS  Google Scholar 

  6. E.E. Elemike, I.M. Uzoh, D.C. Onwudiwe, O.O. Babalola, The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci. 9, 499 (2019). https://doi.org/10.3390/app9030499

    Article  CAS  Google Scholar 

  7. I. Sanzari, A. Leone, A. Ambrosone, Nanotechnology in plant science: to make a long story short. Front. Bioeng. Biotechnol. 7, 120 (2019). https://doi.org/10.3389/fbioe.2019.00120

    Article  PubMed  PubMed Central  Google Scholar 

  8. H. Chen, Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. Chem. Spec. Bioavail. 30(1), 123–134 (2018)

    Article  CAS  Google Scholar 

  9. T. Ben-Moshe, S. Frenk, I. Dror, D. Minz, B. Berkowitz, Effects of metal oxide nanoparticles on soil properties. Chemosphere 90, 640–646 (2013)

    Article  CAS  Google Scholar 

  10. G.A. Achari, M. Kowshik, Recent developments on nanotechnology in agriculture: plant mineral nutrition, health, and interactions with soil microflora. J. Agric. Food Chem. 66, 8647–8661 (2018)

    Article  CAS  Google Scholar 

  11. A. Avellan, F. Schwab, A. Masion, P. Chaurand, D. Borschneck, V. Vidal, J. Rose, C. Santaella, C. Levard, Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ. Sci. Technol. 51, 8682–8691 (2017)

    Article  CAS  Google Scholar 

  12. A. Milewska-Hendel, M. Zubko, J. Karcz, D. Stróz, E. Kurczynska, Fate of neutral charged gold nanoparticles in the roots of the Hordeum vulgare L. cultivar Karat. Sci. Rep. 7, 3014 (2017). https://doi.org/10.1038/s41598-017-02965-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Azeez, A. Lateef, S.A. Adebisi, Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Appl. Nanosci. 7(1–2), 59–66 (2017)

    Article  CAS  Google Scholar 

  14. R. Raliya, V. Saharan, C. Dimkpa, P. Biswas, Nanofertilizer for precision and sustainable Agriculture: current state and future perspectives. J. Agric. Food Chem. 66(26), 6487–6503 (2017)

    Article  Google Scholar 

  15. R. Liu, R. Lal, Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514, 131–139 (2015)

    Article  CAS  Google Scholar 

  16. J. Liu, P.C. Williams, B.M. Goodson, J. Geisler-Lee, M. Fakharifar, M.E. Gemeinhardt, TiO2 nanoparticles in irrigation water mitigate impacts of aged Ag nanoparticles on soil microorganisms, Arabidopsis thaliana plants, and Eisenia fetida earthworms. Environ. Res. 172, 202–215 (2019)

    Article  CAS  Google Scholar 

  17. H. Tombuloglu, Y. Slimani, G. Tombuloglu, A. Demir-Korkmaz, A. Baykal, M. Almessiere, I. Ercan, Impact of superparamagnetic iron oxide nanoparticles (SPIONs) and ionic iron on physiology of summer squash (Cucurbita pepo): a comparative study. Plant Physiol. Biochem. 139, 56–65 (2019)

    Article  CAS  Google Scholar 

  18. H. Tombuloglu, Y. Slimani, G. Tombuloglu, A. Almessiere, H.S.A. Demir-Korkmaz, T.M. AlShammari, A. Baykal, I. Ercan, K.R. Hakeem, Impact of calcium and magnesium substituted strontium nano-hexaferrite on mineral uptake, magnetic character, and physiology of barley (Hordeum vulgare L.). Ecotoxicol. Environ. Saf. 186, 109751 (2019)

    Article  CAS  Google Scholar 

  19. Y. Ren, W. Wang, J. He, L. Zhang, Y. Wei, M. Yang, Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicol. Environ. Saf. 187, 109785 (2020)

    Article  CAS  Google Scholar 

  20. A. Lateef, M.A. Azeez, T.B. Asafa, T.A. Yekeen, A. Akinboro, I.C. Oladipo, L. Azeez, S.A. Ojo, E.B. Gueguim-Kana, L.S. Beukes, Cocoa pod husk extract mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J. Nanostruct. Chem. 6(2), 159–169 (2016)

    Article  CAS  Google Scholar 

  21. A. Lateef, M.A. Azeez, T.B. Asafa, T.A. Yekeen, A. Akinboro, I.C. Oladipo, L. Azeez, S.E. Ajibade, S.A. Ojo, E.B. Gueguim-Kana, L.S. Beukes, Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive. J. Taibah Univ. Sci. 10, 551–562 (2016)

    Article  Google Scholar 

  22. S. Mukhopadhyay, R.E. Masto, R.C. Tripathi, N.K. Srivastava, Application of soil quality indicators for the phytorestoration of mine spoil dumps. phytomanag. Poll. Sites, in Market Opportunities in Sustainable Phytoremediation, ed. by V.C. Pandet (Elsevier, New York, 2019), pp. 361–388

    Google Scholar 

  23. A. Noori, T. Donnelly, J. Colbert, W. Cai, L.A. Newman, J.C. White, Exposure of tomato (Lycopersicon esculentum) to silver nanoparticles and silver nitrate: physiological and molecular response. Int. J. Phytorem. (2019). https://doi.org/10.1080/15226514.2019.1634000

    Article  Google Scholar 

  24. L. Gopalakrishnan, K. Doriya, D.S. Kumar, Moringa oleifera: a review on nutritive importance and its medicinal application. Food Sci. Human Wellness. 5, 49–56 (2016)

    Article  Google Scholar 

  25. A.T. Oyeyinka, S.A. Oyeyinka, Moringa oleifera as a food fortificant: recent trends and prospects. J. Saudi Soc. Agric. Sci. 17, 127–136 (2018)

    Google Scholar 

  26. L. Azeez, O.A. Oyedeji, S.A. Adebisi, A.L. Adejumo, K.O. Tijani, Chemical components retention and modelling of antioxidant activity using neural networks in oven dried tomato slices with and without osmotic dehydration pre-treatment. Food Meas. 11(4), 2247–2258 (2017)

    Article  Google Scholar 

  27. I.F. Bolarinwa, T.E. Aruna, A.O. Raji, Nutritive value and acceptability of bread fortified with moringa seed powder. J. Saudi Soc. Agric. Sci. 18, 195–200 (2019)

    Google Scholar 

  28. Y. Aziz, G.A. Shah, M.I. Rashid, ZnO nanoparticles and zeolite influence soil nutrient availability but do not affect herbage nitrogen uptake from biogas slurry. Chemosphere 216, 564–575 (2019)

    Article  CAS  Google Scholar 

  29. W. Hu, S.B. Tian, Q. Di, S.H. Duan, K. Dai, Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. Photosynthetica 56(4), 1204–1211 (2018)

    Article  CAS  Google Scholar 

  30. M. Esposito, A. De Roma, S. Cavallo, O. Miedico, E. Chiaravalle, V. Soprano, L. Baldi, P. Gallo, Trace elements in vegetables and fruits cultivated in Southern Italy. J. Food Comp. Anal. 84, 103302 (2019)

    Article  CAS  Google Scholar 

  31. H. Upadhyaya, L. Begum, B. Dey, P.K. Nath, S.K. Panda, Impact of calcium phosphate nanoparticles on rice plant. J. Plant Sci. Phytopathol. (2017). https://doi.org/10.29328/journal.jpsp.1001001

    Article  Google Scholar 

  32. AOAC, Official methods of analysis of association, 15th edn. (Official Analytical Chemists, Washington DC, 1990), pp. 69–83

    Google Scholar 

  33. O.E. Arigbede, G.O. Olutona, M.O. Dawodujo, Dietary intake and risk assessment of heavy metals from selected biscuit brands in Nigeria. J. Heavy Metal Toxicity Dis. 4, 2–3 (2019). https://doi.org/10.21767/2473-6457.10027

    Article  Google Scholar 

  34. N.O. Chijioke, M.U. Khandaker, K.M. Tikpangi, D.A. Bradley, Metal uptake in chicken giblets and human health implications. J. Food Comp. Anal. 85, 103332 (2020)

    Article  CAS  Google Scholar 

  35. A.K. Aissi, E.Y. Pazou, T.A. Ahoyo, L. Fah, B. Fanou, L. Koumolou, H. Koudokpon, C. Agbangla, E. Gnandi, F. Loko, P.A. Edorh, Evaluation of toxicological risk related to presence of lead and cadmium in Moringa oleifera Lam. leaves powders marketed in Cotonou (Benin). Food Nutr. Sci. 5, 770–778 (2014)

    Google Scholar 

  36. C. Christophoridis, A. Kosma, E. Evgenakis, A. Bourliva, K. Fytianos, Determination of heavy metals and health risk assessment of cheese products consumed in Greece. J. Food Comp. Anal. 82, 103238 (2019)

    Article  CAS  Google Scholar 

  37. US-EPA, Integrated Risk Information System (IRIS) Database (National Centre for Environmental Assessment Office of Research and Development, Washington DC, 2000)

    Google Scholar 

  38. S.D. Gupta, A. Agarwal, S. Pradhan, Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: an insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol. Environ. Saf. 161, 624–633 (2018)

    Article  CAS  Google Scholar 

  39. B. Kisan, H. Shruthi, H. Sharanagouda, S.B. Revanappa, N.K. Pramod, Effect of nano zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnology 5, 135 (2015). https://doi.org/10.4172/2168-9881.1000135

    Article  Google Scholar 

  40. H.R. Alzahrani, H. Kumakli, E. Ampiah, T. Mehari, A.J. Thornton, C.M. Babyak, S.O. Fakayode, Determination of macro, essential trace elements, toxic heavy metal concentrations, crude oil extracts and ash composition from Saudi Arabian fruits and vegetables having medicinal values. Arabian J. Chem. 10, 906–913 (2017)

    Article  CAS  Google Scholar 

  41. L. Lefticariu, S.R. Sutton, A. Lanzirotti, T.M. Flynn, Enhanced immobilization of arsenic from acid mine drainage by detrital clay minerals. ACS Earth Space Chem. (2019). https://doi.org/10.1021/acsearthspacechem.9b00203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luqmon Azeez.

Ethics declarations

Conflict of interest

All Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azeez, L., Adejumo, A.L., Simiat, O.M. et al. Influence of calcium nanoparticles (CaNPs) on nutritional qualities, radical scavenging attributes of Moringa oleifera and risk assessments on human health. Food Measure 14, 2185–2195 (2020). https://doi.org/10.1007/s11694-020-00465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00465-6

Keywords

Navigation