Skip to main content

Advertisement

Log in

MiR-146a-5p promotes IL-1β-induced chondrocyte apoptosis through the TRAF6-mediated NF-kB pathway

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

This study aimed to explore the role of the miR-146a-5p/TRAF6/NF-KB axis in chondrocyte apoptosis.

Methods

Transcriptome sequencing for microRNA expression in control and osteoarthritic cartilage was performed. Bioinformatic analysis was performed to identify the target genes of miR-146a-5p, and subsequently, Gene Ontology (GO) terms and KEGG pathways were identified. Furthermore, protein–protein interactions were analyzed to identify the hub regulatory gene of miR-146a-5p. MiR-146a-5p mimic, inhibitor and the corresponding negative control were constructed, and the apoptosis rates were measured in the transfected groups by flow cytometry, TUNEL staining and Western blot. Potential miRNA-target interactions were identified by dual-luciferase reporter assay.

Results

The microRNA array demonstrated that miR-146a-5p was significantly upregulated in osteoarthritic tissues, which was further confirmed by PCR analysis. Compared with the control group, IL-1β significantly decreased the viability of chondrocytes, while coculture with miR-146a-5p inhibitor rescued the IL-1β-induced inhibition of chondrocyte viability. Western blot results also identified the proapoptotic effects of miR-146a-5p. Bioinformatic analysis results revealed that miR-146a-5p targeted 159 potential genes, and TRAF6 was the hub gene among the 159 genes. The relative expression of TRAF6 was significantly decreased in the IL-1β-induced group. When siTRAF6 was added, apoptosis was significantly increased. Luciferase reporter assays showed that luciferase activity of the TRAF6 3′-UTR reporter was decreased in chondrocytes after transfection with the miR-146a-5p mimic.

Conclusions

This work showed that miR-146 induces chondrocyte apoptosis by targeting the TRAF6-mediated NF-KB signaling pathway, and miR-146 may be a potential target for OA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choi MC, Jo J, Park J, Kang HK, Park Y. NF-B signaling pathways in osteoarthritic cartilage destruction. Cells. 2019;8:734.

    Article  CAS  Google Scholar 

  2. Zhang W, Robertson WB, Zhao J, Chen W, Xu J. Emerging trend in the pharmacotherapy of osteoarthritis. Front Endocrinol. 2019;10:431.

    Article  Google Scholar 

  3. Cong L, Zhu Y, Tu G. A bioinformatic analysis of microRNAs role in osteoarthritis. Osteoarthr Cartil. 2017;25:1362–71.

    Article  CAS  Google Scholar 

  4. Zhou Z, Du D, Chen A, Zhu L. Circular RNA expression profile of articular chondrocytes in an IL-1beta-induced mouse model of osteoarthritis. Gene. 2018;644:20–6.

    Article  CAS  Google Scholar 

  5. Li HZ, Lin Z, Xu XH, Lin N, Lu HD. The potential roles of circRNAs in osteoarthritis: a coming journey to find a treasure. Biosci Rep. 2018. https://doi.org/10.1042/BSR20180542.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hwang HS, Kim HA. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci. 2015;16:26035–54.

    Article  CAS  Google Scholar 

  7. Musumeci G, Castrogiovanni P, Trovato FM, Weinberg AM, Al-Wasiyah MK, Alqahtani MH, et al. Biomarkers of chondrocyte apoptosis and autophagy in osteoarthritis. Int J Mol Sci. 2015;16:20560–75.

    Article  CAS  Google Scholar 

  8. Honvo G, Leclercq V, Geerinck A, Thomas T, Veronese N, Charles A, et al. Safety of topical non-steroidal anti-inflammatory drugs in osteoarthritis: outcomes of a systematic review and meta-analysis. Drugs Aging. 2019;36:45–644.

    Article  Google Scholar 

  9. Jung SY, Jang EJ, Nam SW, Kwon HH, Im SG, Kim D, et al. Comparative effectiveness of oral pharmacologic interventions for knee osteoarthritis: a network meta-analysis. Mod Rheumatol. 2018;28:1021–8.

    Article  CAS  Google Scholar 

  10. Zhao Z, Ma JX, Ma XL. Different intra-articular injections as therapy for hip osteoarthritis: a systematic review and network meta-analysis. Arthrosc J Arthrosc Relat Surg. 2020. https://doi.org/10.1016/j.arthro.2019.09.043.

    Article  Google Scholar 

  11. Euppayo T, Punyapornwithaya V, Chomdej S, Ongchai S, Nganvongpanit K. Effects of hyaluronic acid combined with anti-inflammatory drugs compared with hyaluronic acid alone, in clinical trials and experiments in osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2017;18:387.

    Article  Google Scholar 

  12. Dai WL, Zhou AG, Zhang H, Zhang J. Efficacy of platelet-rich plasma in the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials. Arthrosc J Arthrosc Relat Surg. 2017;33(659–670):e1.

    Google Scholar 

  13. Jevsevar DS, Shores PB, Mullen K, Schulte DM, Brown GA, Cummins DS. Mixed treatment comparisons for nonsurgical treatment of knee osteoarthritis: a network meta-analysis. J Am Acad Orthop Surg. 2018;26:325–36.

    Article  Google Scholar 

  14. Sui C, Zhang L, Hu Y. MicroRNAlet7a inhibition inhibits LPS induced inflammatory injury of chondrocytes by targeting IL6R. Mol Med Rep. 2019;20:2633–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen J, Wu X. MicroRNA-103 contributes to osteoarthritis development by targeting Sox6. Biomed Pharmacother. 2019;118:109186.

    Article  CAS  Google Scholar 

  16. Huang J, Zhao L. The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression. Nat Commun. 2019;10:2876.

    Article  Google Scholar 

  17. Tiwari A, Mukherjee B, Dixit M. MicroRNA key to angiogenesis regulation: miRNA biology and therapy. Curr Cancer Drug Targets. 2018;18:266–77.

    Article  CAS  Google Scholar 

  18. Ma Y, Wu Y, Chen J, Huang K, Ji B, Chen Z, et al. miR-10a-5p promotes chondrocyte apoptosis in osteoarthritis by targeting HOXA1. Mol Ther Nucleic acids. 2019;14:398–409.

    Article  CAS  Google Scholar 

  19. Ding Y, Wang L, Zhao Q, Wu Z, Kong L. MicroRNA93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NFkappaB signaling pathway. Int J Mol Med. 2019;43:779–90.

    CAS  PubMed  Google Scholar 

  20. Yamasaki K, Nakasa T, Miyaki S, Ishikawa M, Deie M, Adachi N, et al. Expression of microRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 2009;60:1035–41.

    Article  CAS  Google Scholar 

  21. Kopanska M, Szala D, Czech J, Gablo N, Gargasz K, Trzeciak M, et al. MiRNA expression in the cartilage of patients with osteoarthritis. J Orthop Surg Res. 2017;12:51.

    Article  Google Scholar 

  22. Piao S, Du W, Wei Y, Yang Y, Feng X, Bai L. Protectin DX attenuates IL-1beta-induced inflammation via the AMPK/NF-kappaB pathway in chondrocytes and ameliorates osteoarthritis progression in a rat model. Int Immunopharmacol. 2020;78:106043.

    Article  Google Scholar 

  23. Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, et al. 2019 American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 2020;72:220–33.

    Article  Google Scholar 

  24. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:3.

    Article  Google Scholar 

  25. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol. 2011;18:1139–46.

    Article  CAS  Google Scholar 

  26. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–d131131.

    Article  Google Scholar 

  27. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11:R90.

    Article  Google Scholar 

  28. Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, et al. clusterMaker: a multi-algorithm clustering plugin for cytoscape. BMC Bioinf. 2011;12:436.

    Article  CAS  Google Scholar 

  29. Ding Y, Wang L, Zhao Q, Wu Z, Kong L. MicroRNA-93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF-κB signaling pathway. Int J Mol Med. 2019;43:779–90.

    CAS  PubMed  Google Scholar 

  30. Fei J, Liang B, Jiang C, Ni H, Wang L. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomed Pharmacother. 2019;109:1586–92.

    Article  CAS  Google Scholar 

  31. Haseeb A, Makki MS, Khan NM, Ahmad I, Haqqi TM. Deep sequencing and analyses of miRNAs, isomiRs and miRNA induced silencing complex (miRISC)-associated miRNome in primary human chondrocytes. Sci Rep. 2017;7:15178–15178.

    Article  Google Scholar 

  32. Yang G, Li S. Protective effects of garlic-derived S-Allylmercaptocysteine on IL-1beta-stimulated chondrocytes by regulation of MMPs/TIMP-1 ratio and type II collagen expression via suppression of NF-kappaB pathway. Biomed Res Int. 2017;2017:8686207.

    PubMed  PubMed Central  Google Scholar 

  33. Li J, Huang J, Dai L, Yu D, Chen Q, Zhang X, et al. miR-146a, an IL-1beta responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther. 2012;14:R75.

    Article  CAS  Google Scholar 

  34. Qiu M, Li T, Wang B, Gong H, Huang T. miR-146a-5p regulated cell proliferation and apoptosis by targeting SMAD3 and SMAD4. Protein Pept Lett. 2019. https://doi.org/10.2174/0929866526666190911142926.

    Article  PubMed  Google Scholar 

  35. Fan Y, Yu Y, Shi Y, Sun W, Xie M, Ge N, et al. Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation. J Biol Chem. 2010;285:5347–60.

    Article  CAS  Google Scholar 

  36. Yamamoto Y, Gaynor RB. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci. 2004;29:72–9.

    Article  CAS  Google Scholar 

  37. Rasheed Z, Rasheed N, Abdulmonem WA, Khan MI. MicroRNA-125b-5p regulates IL-1beta induced inflammatory genes via targeting TRAF6-mediated MAPKs and NF-kappaB signaling in human osteoarthritic chondrocytes. Sci Rep. 2019;9:6882.

    Article  Google Scholar 

  38. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspect Biol. 2009;1:a000034.

    Article  Google Scholar 

  39. Yang DW, Qian GB, Jiang MJ, Wang P, Wang KZ. Inhibition of microRNA-495 suppresses chondrocyte apoptosis through activation of the NF-κB signaling pathway by regulating CCL4 in osteoarthritis. Gene Ther. 2019;26:217–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qirong Qian or Yi Chen.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Ding, Z., Peng, J. et al. MiR-146a-5p promotes IL-1β-induced chondrocyte apoptosis through the TRAF6-mediated NF-kB pathway. Inflamm. Res. 69, 619–630 (2020). https://doi.org/10.1007/s00011-020-01346-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01346-w

Keyword

Navigation