Skip to main content
Log in

Characterization of a 3D Auxetic Warp-knitted Spacer Fabric by Synchrotron Radiation X-ray Computed Tomography

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Auxetic fabrics have many potential applications in technical textiles. Auxetic 3D warp-knitted spacer fabric can be produced by adoption of some special geometrical configuration. Characterization of the geometrical configurations is of vital significance to understand their auxetic property. In this paper, a typical 3D auxetic warp-knitted spacer fabric was studied by synchrotron radiation x-ray computed tomography (SR-CT). Fiber distribution in the fabric was clearly obtained and different types of yarn were extracted separatively. 3D image reconstructed by synchrotron radiation X-ray computed tomography was consistent with the designed geometrical configuration. Besides, 3D model reconstructed lays the foundation for further numerical analysis by FEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. P. Liu, W. M. Au, and H. Hu, Text. Res. J., 84, 422 (2014).

    Article  CAS  Google Scholar 

  2. Y. P. Liu, H. Hu, and W. M. Au, Text. Res. J., 84, 312 (2013).

    Article  Google Scholar 

  3. Y. P. Chang, P. B. Ma, and G. M. Jiang, Compos. Struct., 182, 471 (2017).

    Article  Google Scholar 

  4. Y. P. Liu, H. Hu, L. Zhao, and H. R. Long, Text. Res. J., 82, 11 (2011).

    Article  Google Scholar 

  5. Y. P. Liu, H. Hu, H. R. Long, and L. Zhao, Text. Res. J., 82, 773 (2012).

    Article  CAS  Google Scholar 

  6. X. Ye, Fangueiro, H. Hu, and M. D. Araujo, J. Text. Inst., 98, 337 (2007).

    Article  Google Scholar 

  7. S. Vassiliadis, D. Matsouka, L. Resetarova, L. Bouin, and A. Marmarali, Conf. Series: Mater. Sci. Eng., 459, 012069 (2019).

    Article  Google Scholar 

  8. Z. Y. Wang and H. Hu, Text. Res. J., 85, 404 (2015).

    Article  CAS  Google Scholar 

  9. H. Krieger, G. Seide, T. Gries, and S. E. Stapleton, Appl. Compos. Mater., 25, 399 (2018).

    Article  Google Scholar 

  10. T. Shinohara, SICE Annual Conference 2008, The University Electro-Communications, Japan, 2008.

    Google Scholar 

  11. J. Pazmino, V. Carvelli, and S. V. Lomov, Compos. Part B-Eng., 65, 147 (2014).

    Article  CAS  Google Scholar 

  12. W. Huang, P. Causse, V. Brailovski, H. Hu, and F. Trochu, Compos. Part A-Appl. Sci. Manuf., 124, 105481 (2019).

    Article  Google Scholar 

  13. F. Desplentere, S. V. Lomov, D. L. Woerdeman, I. Verpoest, M. Wevers, and A. Bogdanovich, Compos. Sci. Technol., 65, 1920 (2005).

    Article  Google Scholar 

  14. H. L. Xie, B. Deng, G. H. Du, Y. He, H. Guo, G. Y. Peng, Y. L. Xue, G. Z. Zhou, Y. Q. Ren, Y. D. Wang, R. C. Chen, Y. Tong, and T. Q. Xiao, J. Instrum., 8, C08003 (2013).

    Article  Google Scholar 

  15. H. L. Xie, B. Deng, G. H. Du, Y. N. Fu, R. C. Chen, G. Z. Zhou, Y. Q. Ren, Y. D. Wang, Y. L. Xue, G. Y. Peng, Y. He, H. Guo, and T. Q. Xiao, Nucl. Sci. Tech., 26, 6 (2016).

    Google Scholar 

  16. Y. P. Chang and P. B. Ma, Text. Res. J., 86, 20 (2017).

    Google Scholar 

  17. M. Barburski, I. Straumit, X. W. Zhang, M. Wevers, and S. V. Lomov, Compos. Part A-Appl. Sci. Manuf., 73, 45 (2015).

    Article  CAS  Google Scholar 

  18. Z. Q. Quan, Z. Larimore, X. H. Qin, J. Y. Yu, M. Mirotznik, J. H. Byun, Y. Oh, and T. W. Chou, Compos. Sci. Technol., 131, 48 (2016).

    Article  CAS  Google Scholar 

  19. R. C. Chen, D. Dreossi, L. Mancini, T. Q. Xiao, and R. Longo, J. Synchrotron Radiat., 19, 836 (2012).

    Article  Google Scholar 

  20. N. Naouar, E. Vidal-Salle, J. Scheneider, E. Maire, and P. Boisse, Compos. Struct., 116, 165 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff in X-ray imaging and biomedical application beamline (BL13W1) at Shanghai Synchrotron Radiation Facility for their supports in the experiment. This research was funded by the Open Project Program of Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University (No. KLET1710).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yantao Gao or Jin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ma, P., Li, K. et al. Characterization of a 3D Auxetic Warp-knitted Spacer Fabric by Synchrotron Radiation X-ray Computed Tomography. Fibers Polym 21, 930–933 (2020). https://doi.org/10.1007/s12221-020-9763-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9763-5

Keywords

Navigation