Skip to main content
Log in

Development and Surface State Characterization of a Spacer Waterproof Breathable Fabric

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This research reports the designing and the optimization of a waterproof breathable fabric. A new waterproof breathable fabric made by coating a double sided spacer knit with a mixture of an acrylic paste and a fluorocarbon resin is presented. The treated fabric can be used for producing outdoor garments. The surface states of treated samples were characterized by using the assessment of the coating add-on (%), water contact angle (°), surface free energy (mN·m−1), and roughness (mm). The main coating process parameters were studied by using the Box-Behnken experimental design. It was proved that the quantity of acrylic paste (g·m−2) and the reticulation time (min) have the most significant effect on the coating add-on value (%). The surface free energy (mN·m−1) is affected by the three studied factors. Roughness was also evaluated before and after the coating treatment. However, no significant variation in values was noticed. Optimum responses are obtained with 2.71 % of fluorocarbon resin, 412.00 g·m−2 of acrylic paste, and a reticulation time equal to 13.52 minutes. Optimized values for the coating add-on, SFE, and roughness are equal to 79.716 %, 29.17 mN·m−1, and 0.058 mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Ozen, J. Eng. Fiber. Fabr., 7, 63 (2012).

    Google Scholar 

  2. W. Y. Jeong and S. K. An, Fiber. Polym., 5, 316 (2004).

    Article  Google Scholar 

  3. A. Razzaque, P. Tesinova, L. Hes, J. Salacova, and H. A. Abid, Fiber. Polym., 18, 1924 (2017).

    Article  CAS  Google Scholar 

  4. A. K. Sen, “Coated Textiles-Principles And Applications”, 2nd ed., p. 264, CRC Press, Boca Raton, FL, USA, 2017.

    Google Scholar 

  5. M. Harnisch, B. M. Woelfling, and E. Classen, Int. J. Appl. Res. Text., 5, 9 (2017).

    Google Scholar 

  6. D. A. Holmes, J. Ind. Text., 29, 306 (2000).

    Article  Google Scholar 

  7. B. Das, A. Das, V. K. Kothari, R. Fangueiro, and M. de Araújo, Autex Res., J., 7, 194 (2007).

    Google Scholar 

  8. BS 7209: 1990, Textiles-Water Vapor Permeable Apparel Fabrics, 1990.

  9. B. Das, A. Das, V. K. Kothari, R. Fanguiero, and M. de Araújo, Autex Res. J., 7, 100 (2007).

    Google Scholar 

  10. A. Mukhopadhyay and V. K. Midha, J. Ind. Text., 37, 225 (2008).

    Article  CAS  Google Scholar 

  11. Grand View Research, Waterproof Breathable Textiles (WBT) Market Analysis by Raw Material (ePTFE, Polyurethane, Polyester), By Textile (Densely Woven, Membrane, Coated), By Product (Garment, Footwear, Gloves), by Application (Active Sportswear) and Segment Forecasts, 2018–2024, p. 250, San Francisco, 2016.

  12. S. K. Chinta and D. Satish, Int. J. Recent Dev. Eng. Technol., 3, 2347 (2014).

    Google Scholar 

  13. R. I. Shekar, A. K. Yadav, K. Kumar, and V. S. Tripthi, Man-Made Text. India, 46, 9 (2003).

    CAS  Google Scholar 

  14. P. Bajaj, Indian J. Fibre Text. Res., 26, 162 (2001).

    CAS  Google Scholar 

  15. E. Cabane, X. Zhang, K. Langowska, C. G. Palivan, and W. Meier, Biointerphases, 7, 9 (2012).

    Article  CAS  Google Scholar 

  16. A. Mukhopadhyay and V. K. Vinay Kumar Midha, J. Ind. Text., 38, 17 (2008).

    Article  CAS  Google Scholar 

  17. High Production Cost Hinder Smart Textiles Growth, Report (https://ww.fashionnetwork.com/news/High-producion-cost-hinder-smart-textiles-growth.896192.html), November 28, 2017.

  18. A. Moussa, I. Ben Marzoug, H. Bouchereb, and F. Sakli, J. Ind. Text., 45, 437 (2015).

    Article  CAS  Google Scholar 

  19. I. Ghezal, A. Moussa, I. Ben Marzoug, C. Campagne, M. Rochery, and F. Sakli, Int. Conf. Appl. Res. Text. CIRAT-7, p. 94, 2016.

  20. F. Ferrero, M. Periolatto, and C. Udrescu, Fiber. Polym., 13, 191 (2012).

    Article  CAS  Google Scholar 

  21. M. Kabbari, A. Ghith, F. Fayala, and N. Liouane, Fiber. Polym., 17, 873 (2016).

    Article  CAS  Google Scholar 

  22. P. De, M. D. Sankhe, S. S. Chaudhari, and M. R. Mathur, J. Ind. Text., 34, 209 (2005).

    Article  CAS  Google Scholar 

  23. Y. Sato, T. Wakida, S. Tokino, S. Niu, M. Ueda, H. Mizushima, and S. Takekoshi, Text. Res. J., 64, 316 (1994).

    Article  CAS  Google Scholar 

  24. A. Bakshi, Ph.D. Dissertation, School of Technology Studies, Michigen, 2015.

    Google Scholar 

  25. S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandão, E. G. P. da Silva, L. A. Portugal, P. S. dos Reis, A. S. Souza, and W. N. L. dos Santos, Anal. Chim. Acta, 597, 179 (2007).

    Article  CAS  Google Scholar 

  26. P. Dayal, V. Pillay, R. J. Babu, and M. Singh, AAPS PharmSciTech, 6, E573 (2005).

    Article  Google Scholar 

  27. R. Mishra, A. Veerakumar, and J. Militky, Int. J. Cloth. Sci. Technol., 28, 328 (2016).

    Article  Google Scholar 

  28. R. Bagherzadeh, M. Montazer, M. Latifi, M. Sheikhzadeh, and M. Sattari, Fiber. Polym., 8, 386 (2007).

    Article  CAS  Google Scholar 

  29. A. Gugliuzza and E. Drioli, J. Memb. Sci., 446, 350 (2013).

    Article  CAS  Google Scholar 

  30. J. McLoughlin and T. Sabir, “High-Performance Apparel: Materials, Development, and Applications”, 1st ed., p. 504, Woodhead Publishing, Cambridge, 2017.

    Google Scholar 

  31. T. Karthik, P. Senthilkumar, and R. Murugan, J. Ind. Text., 47, 897 (2018).

    Article  Google Scholar 

  32. V. Castelvetro, G. Francini, G. Ciardelli, and M. Ceccato, Text. Res. J., 71, 399 (2001).

    Article  CAS  Google Scholar 

  33. S. Mondal and J. L. Hu, Carbohydr. Polym., 67, 282 (2007).

    Article  CAS  Google Scholar 

  34. H. Zhou, H. Wang, H. Niu, A. Gestos, and T. Lin, Adv. Funct. Mater., 23, 1664 (2013).

    Article  CAS  Google Scholar 

  35. A. Rudawska and E. Jacniacka, Int. J. Adhes. Adhes., 29, 451 (2009).

    Article  CAS  Google Scholar 

  36. G. Lefebvre, Ph.D. Dissertation, INP Toulouse, Toulouse, 2010.

    Google Scholar 

  37. G. Yamauchi, Y. Riko, Y. Yasuno, T. Shimizu, and N. Funakoshi, Surf. Coatings Int. Part B Coatings Trans., 88, 281 (2005).

    Article  CAS  Google Scholar 

  38. M. Akgun, Fiber. Polym., 15, 405 (2014).

    Article  CAS  Google Scholar 

  39. D. Quéré, Annu. Rev. Mater. Res., 38, 71 (2008).

    Article  Google Scholar 

  40. K. Stout, P. Sullivan, W. Dong, E. Mainsah, N. Luo, T. Mathia, and H. Zahouani, “Development of Methods for Characterisation of Roughness in Three Dimensions”, 1st ed., p. 384, Penton Press, New York, 2000.

    Google Scholar 

  41. E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, J. Mater. Process. Technol., 123, 133 (2002).

    Article  Google Scholar 

  42. B. Becerir, M. Akgun, and H. R. Alpay, Text. Res. J., 86, 975 (2016).

    Article  CAS  Google Scholar 

  43. L. Jiang, Z. Tang, R. M. Clinton, V. Breedveld, and D. W. Hess, ACS Appl. Mater. Interfaces, 9, 9195 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imene Ghezal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghezal, I., Moussa, A., Ben Marzoug, I. et al. Development and Surface State Characterization of a Spacer Waterproof Breathable Fabric. Fibers Polym 21, 910–920 (2020). https://doi.org/10.1007/s12221-020-8936-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-8936-6

Keywords

Navigation