Skip to main content
Log in

Microcrystalline Cellulose Management in the Production of Poly(ether-urethane)s- Structure, Morphology, and Thermal Characteristic

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In response to the demand of polymer industry for reducing the use of synthetic chemicals, eco-friendly materials are investigated. In the presented study, bio-based poly(ether-urethane)s were prepared by using microcrystalline cellulose (MCC) and polyether polyol and 1,3-propanediol derived from corn sugar. A step towards sustainability was taken by incorporating bio-based compounds and cellulose, consequently, bio-waste are utilized in a smart way. The new materials were synthesized via prepolymer method, while the cellulose fibers were added after the reaction. Structural studies of biocomposites were realized by FTIR technique. The number of free and hydrogen-bonded carbonyl groups was determined based on the deconvolution of C=O band. Crystallinity was assessed on the basis of X-ray diffraction analysis. The influence of the MCC content on the thermo-mechanical, thermal and selected mechanical properties has been demonstrated. Results obtained by SEM method showed that the higher degree of reinforcement led to the formation of aggregates reflecting their poor dispersion in the polymer matrix. It may probably result from the relatively weaker interaction between MCC and PU matrix. On the other hand, it was found that the incorporation of fibers improved the thermo-mechanical and thermal properties of the prepared materials. This work provides an effective way of using bio-renewable chemicals in the polyurethane industry without using additional processing apparatus and chemical processes. The used method makes it possible to obtain materials with high bio-content and satisfactory thermal characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lligadas, J. C. Ronda, M. Galia, and V. Cadiz, Materials Today, 16, 337 (2013).

    Article  CAS  Google Scholar 

  2. K. Błazek and J. Datta Critical Rev. Environ. Sci. Technol., 49, 173 (2019).

    Article  CAS  Google Scholar 

  3. J. Datta, M. Laski, and J. Kucinska-Lipka, Przemysl Chemiczny, 86, 63 (2007).

    CAS  Google Scholar 

  4. J. Datta and P. Kasprzyk, Polym. Eng. Sci., 58, E14 (2017).

    Article  CAS  Google Scholar 

  5. J. Datta and A. Balas, J. Therm. Anal. Calorim., 74, 615 (2003).

    Article  CAS  Google Scholar 

  6. N. E. Marcovich, M. Kuranska, A. Prociak, E. Malewska, and K. Kulpa, Ind. Crops Prod., 102, 88 (2017).

    Article  CAS  Google Scholar 

  7. M. Kuranska, and A. Prociak, Ind. Crops Prod., 89, 182 (2016).

    Article  CAS  Google Scholar 

  8. M. A. Mosiewicki, P. Rojek, S. Michalowski, M. I. Aranguren, and A. Prociak, J. Appl. Polym. Sci., 132, 1 (2015).

    Article  CAS  Google Scholar 

  9. A. Hejna, M. Kirpluks, P. Kosmela, U. Cabulis, J. Haponiuk, and Ł. Piszczyk, Ind. Crops Prod., 95, 113 (2017).

    Article  CAS  Google Scholar 

  10. A. Palanisamy, M. S. L. Karuna, T. Satyavani, and D. B. Rohini Kumar, J. Am. Oil Chemists’ Society, 88, 541 (2011).

    Article  CAS  Google Scholar 

  11. W. Liu, K. Xu, C. Wang, B. Qian, Y. Sun, Y. Zhang, H. Xie, and R. Cheng, J. Therm. Anal. Calorim., 123, 2459 (2016).

    Article  CAS  Google Scholar 

  12. R. Surender, A. R. Mahendran, G. Wuzella, and C. T. Vijayakumar, J. Therm. Anal. Calorim., 123, 525 (2016).

    Article  CAS  Google Scholar 

  13. X. Kong, G. Liu, and J. M. Curtis, Eur. Polym. J., 48, 2097 (2012).

    Article  CAS  Google Scholar 

  14. L. K. Jia, L. X. Gong, W. J. Ji, and C. Y. Kan, Chinese Chem. Lett., 22, 1289 (2011).

    Article  CAS  Google Scholar 

  15. Ł. Piszczyk, M. Strankowski, M. Danowska, A. Hejna, and J. T. Haponiuk, Eur. Polym. J., 57, 143 (2014).

    Article  CAS  Google Scholar 

  16. C. M. Obele, O. Ogbobe, and I. F. Okonkwo, Pakistan J. Nutricion, 9, 1058 (2010).

    Article  CAS  Google Scholar 

  17. A. Drozdzyńska, K. Leja, and K. Czaczyk, J. Biotechnol. Comput. Biol. Bionanotechnol., 92, 92 (2011).

    Google Scholar 

  18. S. Joshi and V. Ranade in “Industrial Catalytic Processes for Fine and Specialty Chemicals” (P. Kumbhar, J. Sawant, and A. Ghosalkar Eds.), pp. 597–662, Elsevier, 2016.

  19. B. Erickson, Nelson, and P. Winters, Biotechnol. J., 7, 176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. Hojabri, X. Kong, and S. S. Narine, Biomacromolecules, 10, 884 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. A. S. More, T. Lebarbé, L. Maisonneuve, B. Gadenne, C. Alfos, and H. Cramail, Eur. Polym. J., 49, 823 (2013).

    Article  CAS  Google Scholar 

  22. T. Calvo-Correas, A. Santamaria-Echart, A. Saralegi, L. Martin, Á. Valea, M. A. Corcuera, and A. Eceiza, Eur. Polym. J., 70, 173 (2015).

    Article  CAS  Google Scholar 

  23. K. Mahmood, K. M. Zia, W. Aftab, M. Zuber, S. Tabasum, A. Noreen, and F. Zia, Int. J. Biol. Macromol., 113, 150 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. K. Mahmood, K. M. Zia, M. Zuber, S. Tabasum, S. Rehman, F. Zia, and A. Noreen, Int. J. Biol. Macromol., 105, 1180 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. A. Usman, K. M. Zia, S. Tabasum, S. Rehman, and F. Zia, Int. J. Biol. Macromol., 86, 630 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. M. A. Javaid, R. A. Khera, K. M. Zia, K. Saito, I. A. Bhatti, and M. Asghar, Int. J. Biol. Macromol., 115, 375 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. R. da Rosa Schio, B. C. da Rosa, J. O. Gonçalves, L. A. A. Pinto, E. S. Mallmann, and G. L. Dotto, Int. J. Biol. Macromol., 121, 373 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. S. Das, P. Pandey, S. Mohanty, and S. K. Nayak, Int. Biodeterior. Biodegrad., 117, 278 (2017).

    Article  CAS  Google Scholar 

  29. V. D. Da Silva, L. M. Dos Santos, S. M. Subda, R. Ligabue, M. Seferin, C. L. P. Carone, and S. Einloft, Polym. Bull., 70, 1819 (2013).

    Article  CAS  Google Scholar 

  30. E. Głowińska, J. Datta and P. Parcheta, J. Therm. Anal. Calorim., 130, 113 (2017).

    Article  CAS  Google Scholar 

  31. L. P. Gabriel, M. E. M. dos Santos, A. L. Jardini, G. N. T. Bastos, C. G. B. T. Dias, T. J. Webster, and R. Maciel Filho, Biol. Med., 13, 201 (2017).

    CAS  Google Scholar 

  32. C. Zhang, H. Wu, and M. R. Kessler, Polymer, 69, 52 (2015).

    Article  CAS  Google Scholar 

  33. J. Datta and P. Kopczyńska, Ind. Crops Prod., 74, 566 (2015).

    Article  CAS  Google Scholar 

  34. M. A. Mosiewicki, U. Casado, N. E. Marcovich, and M. I. Aranguren, Polym. Eng. Sci., 49, 685 (2009).

    Article  CAS  Google Scholar 

  35. Z. Rafiee and V. Keshavarz, Prog. Org. Coat., 86, 190 (2015).

    Article  CAS  Google Scholar 

  36. D. Trache, M. H. Hussin, C. T. Hui Chuin, S. Sabar, M. R. N. Fazita, O. F. A. Taiwo, T. M. Hassan, and M. K. M. Haafiz, Int. J. Biol. Macromol., 93, 789 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. A. Cataldi, A. Dorigato, F. Deflorian, and A. Pegoretti, J. Mater. Sci., 49, 2035 (2014).

    Article  CAS  Google Scholar 

  38. X. Kong, L. Zhao, and J. M. Curtis, Carbohydr. Polym., 152, 487 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. A. Santamaria-Echart, L. Ugarte, C. García-Astrain, A. Arbelaiz, M. A. Corcuera, and A. Eceiza, Carbohydr. Polym., 151, 1203 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Q. Zhao, G. Sun, K. Yan, A. Zhou, and Y. Chen, Carbohydr. Polym., 91, 169 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. A. M. Adel and N. A. El-shinnawy, Int. J. Biol. Macromol., 51, 1091 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. M. K. M. Haafiz, A. Hassan, Z. Zakaria, and I. M. Inuwa, Carbohydr. Polym., 103, 119 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. D. Trache, M. H. Hussin, C. T. Hui Chuin, S. Sabar, M. R. N. Fazita, O. F. A. Taiwo, T. M. Hassan, and M. K. M. Haafiz, Int. J. Biol. Macromol., 93, 789 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. R. D. Kalita, Y. Nath, M. E. Ochubiojo, and A. K. Buragohain, Colloids and Surfaces B: Biointerfaces, 108, 85 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. K. Das, D. Ray, N. R. Bandyopadhyay, and S. Sengupta, J. Polym. Environ., 18, 355 (2010).

    Article  CAS  Google Scholar 

  46. A. M. Adel, Z. H. Abd El-Wahab, A. A. Ibrahim, and M. T. Al-Shemy, Carbohydr. Polym., 83, 676 (2011).

    Article  CAS  Google Scholar 

  47. Y. A. El-Shekeil, S. M. Sapuan, A. Khalina, E. S. Zainudin, and O. M. Al-Shuja’a, Express Polym. Lett., 6, 1032 (2012).

    Article  CAS  Google Scholar 

  48. H.-Y. Mi, X. Jing, M. R. Salick, T. M. Cordie, and L.-S. Turng, J. Mech. Behav. Biomed. Mate., 62, 139 (2016).

    Article  Google Scholar 

  49. A. Hadjadj, O. Jbara, A. Tara, M. Gilliot, F. Malek, E. M. Maafi, and L. Tighzert, Compos. Struct., 135, 217 (2016).

    Article  Google Scholar 

  50. Y. I. Tien and K. H. Wei, Polymer, 42, 3213 (2001).

    Article  CAS  Google Scholar 

  51. S. Lin, J. Huang, P. R. Chang, S. Wei, Y. Xu, and Q. Zhang, Carbohydr. Polym., 95, 91 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. H. D. Kim, T. J. Lee, J. H. Huh, and D. J. Lee, J. Appl. Polym. Sci., 37, 345 (1999).

    Article  CAS  Google Scholar 

  53. T. L. Yu, T. L. Lin, Y. M. Tsai, and W. J. Liu, J. Polym. Sci. Part B: Polym. Phys., 37, 2673 (1999).

    Article  CAS  Google Scholar 

  54. X. Kong, L. Zhao, and J. M. Curtis, Carbohydr. Polym., 152, 487 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. A. Pei, J. M. Malho, J. Ruokolainen, Q. Zhou, and L. A. Berglund, Macromolecules, 44, 4422 (2011).

    Article  CAS  Google Scholar 

  56. L. Ugarte, B. Fernández-d’Arlas, A. Valea, M. L. González, M. A. Corcuera, and A. Eceiza, Polym. Eng. Sci., 54, 2282 (2014).

    Article  CAS  Google Scholar 

  57. P. N. Lan, S. Corneillie, E. Schacht, M. Davies, and A. Shard, Biomaterials, 17, 2273 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. D. Ciolacu, F. Ciolacu, and V. I. Popa, Cellulose Chem. Technol., 45, 13 (2011).

    CAS  Google Scholar 

  59. Y. A. El-Shekeil, S. M. Sapuan, and M. W. Algrafi, Mater. Des., 64, 330 (2014).

    Article  CAS  Google Scholar 

  60. M. Bassyouni, S. A. Sherif, M. A. Sadek, and F. H. Ashour, Compos. Part B: Eng., 43, 1439 (2012).

    Article  CAS  Google Scholar 

  61. P. Khawas and S. C. Deka, Carbohydr. Polym., 137, 608 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Fuel, 86, 1781 (2007).

    Article  CAS  Google Scholar 

  63. A. I. Cordero, J. I. Amalvy, E. Fortunati, J. M. Kenny, and L. M. Chiacchiarelli, Carbohydr. Polym., 134, 110 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. P. Alagi, Y. J. Choi, and S. C. Hong, Eur. Polym. J., 78, 46 (2016).

    Article  CAS  Google Scholar 

  65. E. Głowińska and J. Datta, Cellulose, 23, 581 (2016).

    Article  CAS  Google Scholar 

  66. W. Lei, X. Zhou, C. Fang, Y. Song, and Y. Li, Carbohydr. Polym., 209, 299 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. M. Włoch, J. Datta, and K. Błażek, J. Polym. Environ., 4, 4415 (2018).

    Google Scholar 

  68. C. Prisacariu, E. Scortanu, A. Airinei, B. Agapie, M. Iurzhenko, and Y. P. Mamunya, Procedia Engineering, 10, 446 (2011).

    Article  CAS  Google Scholar 

  69. L. S. T. J. Korley, B. D. Pate, E. L. Thomas, and P. T. Hammond, Polymer (Guildf), 47, 3073 (2006).

    Article  CAS  Google Scholar 

  70. J. Ervina, M. Mariatti, and S. Hamdan, Procedia Chemistry, 19, 897 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasprzyk, P., Błażek, K. & Datta, J. Microcrystalline Cellulose Management in the Production of Poly(ether-urethane)s- Structure, Morphology, and Thermal Characteristic. Fibers Polym 21, 690–700 (2020). https://doi.org/10.1007/s12221-020-9482-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9482-y

Keywords

Navigation