Skip to main content
Log in

The Determination of Fracture Characterization of Knitted Fabric Reinforced Composites Using Arcan Test

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Type, structure and orientation angle of the reinforcing material used in laminated composite structures directly affect the mechanical behavior of the composite material. Knitted fabrics are becoming increasingly widespread as reinforcing materials in laminated composites due to their superior mechanical and physical properties. In this study, mechanical properties and fracture toughness of knitted fabric reinforced laminated composites were investigated. 1×1 rib knitted fabric reinforced glass/epoxy and carbon/epoxy laminated composites were produced by hand lay-up method. Mechanical behaviors of the produced composites were determined under tensile, compressive and shear loads. The fracture toughness of the knitted fabric reinforced composites was determined under Mode I (0 °), Mode II (90 °) and Mode I/II (30 °, 45 °, and 60 °) loading conditions by using Arcan test apparatus. In addition, the fracture toughness of glass/epoxy and carbon/epoxy laminated composites were numerically determined using the J integral method in the ANSYS finite element program. Test results have shown that knitted fabrics can be used as an alternative reinforcing material in the production of laminated composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. M. S. Costa and M. A. R. Loja, Res. Eng. Struct. Mater., 3, 27 (2017).

    Google Scholar 

  2. H. E. Balcioglu, Res. Eng. Struct. Mater., 5, 213 (2019).

    Google Scholar 

  3. W. Ashraf, Y. Nawab, M. Umair, K. Shaker, and M. Karahan, J. Text. Inst., 108, 1510 (2017).

    Article  CAS  Google Scholar 

  4. N. K. Cuong, H. Yamane, and Z. Maekawa, Adv. Compos. Mater., 9, 25 (2000).

    Article  CAS  Google Scholar 

  5. Y. Qi, J. Li, and L. Liu, Mater. Des., 54, 678 (2014).

    Article  CAS  Google Scholar 

  6. T. Alpyildiz, B. M. Icten, R. Karakuzu, and A. Kurbak, Compos. Struct., 89, 391 (2009).

    Article  Google Scholar 

  7. K. Leongh, P. Falzon, M. Bannister, and I. Herszberg, Compos. Sci. Technol., 58, 239 (1998).

    Article  Google Scholar 

  8. B. Gommers, I. Verpoest, and P. Van Houtte, Compos. Sci. Technol., 56, 685 (1996).

    Article  CAS  Google Scholar 

  9. Y. Zhang, Z. M. Huang, and S. Ramakrishna, Appl. Compos. Mater., 8, 279 (2001).

    Article  Google Scholar 

  10. D. S. Li, Y. Xia, Q. Zhou, L. Jiang, and N. Jiang, Polym. Compos., 37, 3486 (2016).

    Article  CAS  Google Scholar 

  11. D. S. Li, C. Zhao, and N. Jiang, Compos. Struct., 111, 56 (2014).

    Article  Google Scholar 

  12. N. Jiang, D. S. Li, Q. Yao, H. Duan, and F. Ko, Polym. Compos., 39, E1987 (2018).

    Article  CAS  Google Scholar 

  13. K. H. Leong, S. Ramakrishna, Z. M. Huang, and G. A. Bibo, Compos. Part A-Appl. Sci. Manuf., 31, 197 (2000).

    Article  Google Scholar 

  14. K. Y. Kim, J. I. Curiskis, L. Ye, and S. Y. Fu, Compos. Part A-Appl. Sci. Manuf., 36, 954 (2005).

    Article  Google Scholar 

  15. D. Falconnet, P. E. Bourban, S. Pandita, J. A. Manson, and I. Verpoest, Compos. Part B-Eng, 33, 579 (2002).

    Article  Google Scholar 

  16. R. Reber, J. De Hann, J. Mayer, M. Petitmermet, and E. Wintermatnel, Fract. Polym. Compos. Adhes., 27, 123 (2000).

    CAS  Google Scholar 

  17. P. B. Gning, D. Delsart, J. M. Mortier, and D. Coutellier, Compos. Part B-Eng., 41, 308 (2010).

    Article  Google Scholar 

  18. R. Hasanpour and N. Choupani, Int. J. Rock Mech. Min. Sci., 46, 346 (2009).

    Article  Google Scholar 

  19. G. Stamoulis, N. Carrere, J. Y. Cognard, P. Davies, and C. Badulescu, Int. J. Adhes. Adhes., 66, 147 (2016).

    Article  CAS  Google Scholar 

  20. L. Gao, F. Ni, A. Braham, and H. Luo, Constr. Build. Mater., 55, 415 (2014).

    Article  Google Scholar 

  21. D. S. Li, N. Jiang, C. Zhao, L. Jiang, and Y. Tan, Compos. Part B-Eng., 68, 126 (2015).

    Article  CAS  Google Scholar 

  22. A. C. Tatar, H. B. Kaybal, H. Ulus, O. Demir, and A. Avcı, Res. Eng. Struct. Mater., 5, 115 (2019).

    Google Scholar 

  23. ASTM D3039/D3039M-08, ASTM International, United States, 2008.

  24. ASTM D 3518/D 3518M, ASTM International, United States, 1994.

  25. H. E. Balcioğlu and M. Aktaş, Indian J. Eng. Mater. Sci., 20, 367 (2013).

    Google Scholar 

  26. M. O. Kaman, Eng. Fract. Mech., 78, 2521 (2011).

    Article  Google Scholar 

  27. M. O. Kaman, Turk. J. Sci. Technol., 6, 61 (2011).

    Google Scholar 

  28. Ş. Arasan, M. Aktaş, and H. E. Balcioğlu, Polym. Compos., 39, 723 (2016).

    Google Scholar 

  29. ASTM D 3410/D 3410M-03, ASTM International, United States, 2003.

  30. ASTM D 5379/D 5379M-98, ASTM International, United States, 1999.

  31. ASTM D 5045-14, ASTM International, United States, 2014.

  32. N. Choupani, Mater. Sci. Eng. A, 478, 229 (2008).

    Article  Google Scholar 

  33. S. H. Yoon and C. S. Hong, Exp. Mech., 30, 234 (1990).

    Article  Google Scholar 

  34. J. Jamali, A. H. I. Mourad, Y. Fan, and J. T. Wood, Eng. Fract. Mech., 156, 83 (2016).

    Article  Google Scholar 

  35. J. Jamali, Y. Fan, and J. T. Wood, Int. J. Adhes. Adhes., 63, 79 (2015).

    Article  CAS  Google Scholar 

  36. M. Nikbakht and N. Choupani, Int. J. Mech. Ind. Aerosp. Eng., 2, 259 (2008).

    Google Scholar 

  37. G. L. C. Gonzáles, J. A. O. González, J. T. P. Castro, and J. L. F. Freire, Theor. Appl. Fract. Mech., 90, 14 (2017).

    Article  Google Scholar 

  38. S. A. Jones and R. A. Tomlinson, Eng. Fract. Mech., 49, 368 (2015).

    Article  Google Scholar 

  39. E. M. Wu, J. Appl. Mech., 34, 967 (1967).

    Article  Google Scholar 

  40. R. A. Jurf and R. B. Pipes, J. Compos. Mater., 16, 386 (1982).

    Article  Google Scholar 

  41. R. Karakuzu, N. Taylak, B. M. İçten, and M. Aktaş, Compos. Struct., 85, 1 (2008).

    Article  Google Scholar 

  42. R. Karakuzu, C. R. Çalışkan, M. Aktaş, and B. M. İçten, Compos. Struct., 282, 225 (2008).

    Article  Google Scholar 

  43. J. Garcia-Manrique, D. Camas, P. Lopez-Crespo, and A. Gonzalez-Herrera, Int. J. Fatigue, 46, 58 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ersen Balcıoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balcıoğlu, H.E., Yalçın, D. The Determination of Fracture Characterization of Knitted Fabric Reinforced Composites Using Arcan Test. Fibers Polym 21, 849–863 (2020). https://doi.org/10.1007/s12221-020-9619-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9619-z

Keywords

Navigation