Skip to main content
Log in

Micro-XCT Characterization and Numerical Analysis of Bending Damage Mechanism in Carbon Fiber Plain, Twill and Winding Composite Tubes

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Transverse bending damage morphologies of carbon fiber composite tubes with different ply structures were investigated by the micro-XCT characterization. Structural effects of the plain, twill and winding on the damage mechanism were analyzed. The experimental results present fiber-resin cracking, interlayer delamination and fiber tows breakage with structural deformation from the peak load to final catastrophic failure. Woven fabric plies in the plain and twill composite tubes cannot be effectively slipped because of their tight interlaced structures, which makes the load propagate along the warp and weft fiber tows, resulting in more fiber tows breakage under bending-induced stretching. There is no interlaced effect on the failure mechanism for the winding tubes, resulting in a fact that the bending load can only be transferred from the fiber-resin or the layer-to-layer interface, with more interlaminar slippage and obvious springback behaviors under in-plane shear. For investigating the interlaced effect on failure mechanism, plain and winding models under transverse bending were established using continuous shell elements, and different constitutive description were used to simulate interlayer failure and intra-layer failure behaviors. By comparing the numerical results with the experimental ones, the influence of the fabric structure on the failure behavior of the tube were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. G. Falzon and P. Apruzzese, Compos. Struct., 93, 1039 (2011).

    Article  Google Scholar 

  2. B. G. Falzon and P. Apruzzese, Compos. Struct., 93, 1047 (2011).

    Article  Google Scholar 

  3. W. Tan, B. G. Falzon, and M. Price, Int. J. Crashworthines, 20, 60 (2015).

    Article  Google Scholar 

  4. G. Zhu, G. Sun, Q. Liu, G. Li, and Q. Li, Compos. Struct., 175, 58 (2017).

    Article  Google Scholar 

  5. S. Boria, A. Scattina, and G. Belingardi, Compos. Struct., 130, 18 (2015).

    Article  Google Scholar 

  6. J. S. Kim, H. J. Yoon, and K. B. Shin, Int. J. Impact. Eng., 38, 198 (2011).

    Article  Google Scholar 

  7. L. Grauers, R. Olsson, and R. Gutkin, Compos. Struct., 110, 110 (2014).

    Article  Google Scholar 

  8. P. H. Thornton and C. L. Magee, J. Eng. Mater.-T. Asme., 99, 114 (1977).

    Article  CAS  Google Scholar 

  9. C. Priem, R. Othman, P. Rozycki, and D. Guillon, Compos. Struct., 116, 814 (2014).

    Article  Google Scholar 

  10. A. G. Mamalis, D. E. Manolakos, M. B. Ioannidis, and D. P. Papapostolou, Compos. Struct., 63, 347 (2004).

    Article  Google Scholar 

  11. R. Kalhor and S. W. Case, Compos. Struct., 130, 44 (2015).

    Article  Google Scholar 

  12. E. V. Morozov, Compos. Struct., 76, 123 (2006).

    Article  Google Scholar 

  13. P. Mertiny, F. Ellyin, and A. Hothan, Compos. Sci. Technol., 64, 1 (2004).

    Article  Google Scholar 

  14. M. Y. Huang, Y. S. Tai, and H. T. Hu, Appl. Compos. Mater., 19, 1 (2012).

    Article  Google Scholar 

  15. K. C. Shin, J. J. Lee, K. H. Kim, M. C. Song, and J. S. Huh, Compos. Struct., 57, 279 (2002).

    Article  Google Scholar 

  16. R. A. Eshkoor, S. A. Oshkovr, A. B. Sulong, R. Zulkifli, A. K. Ariffin, and C. H. Azhari, Compos. Part B-Eng., 55, 5 (2013).

    Article  CAS  Google Scholar 

  17. G. Sun, S. Li, G. Li, and Q. Li, Compos. Part B-Eng., 145, 47 (2018).

    Article  CAS  Google Scholar 

  18. R. Sharma, V. V. Deshpande, A. R. Bhagat, P. Mahajan, and R. K. Mittal, Carbon, 60, 335 (2013).

    Article  CAS  Google Scholar 

  19. P. J. Schilling, B. P. R. Karedla, A. K. Tatiparthi, M. A. Verges, and P. D. Herrington, Compos. Sci. Technol., 65, 2071 (2005).

    Article  CAS  Google Scholar 

  20. G. A. Schoeppner and S. Abrate, Compos. Part A-Appl. Sci. Manuf., 31, 903 (2000).

    Article  Google Scholar 

  21. D. J. Bull, L. Helfen, I. Sinclair, S. M. Spearing, and T. Baumbach, Compos. Sci. Technol., 75, 55 (2013).

    Article  CAS  Google Scholar 

  22. O. Dorival, P. Navarro, S. Marguet, C. Petiot, M. Bermudez, D. Mesnagé, and J. F. Ferrero, Compos. Part B-Eng, 78, 244 (2015).

    Article  CAS  Google Scholar 

  23. C. H. Chiu, K. H. Tsai, and W. J. Huang, J. Compos. Mater., 32, 1964 (1998).

    Article  CAS  Google Scholar 

  24. R. Seltzer, C. González, R. Muñoz, J. Llorca, and T. Blanco-Varela, Compos. Part A-Appl. Sci. Manuf., 45, 49 (2013).

    Article  CAS  Google Scholar 

  25. K. T. Tan, N. Watanabe, and Y. Iwahori, Compos. Part B-Eng., 42, 874 (2011).

    Article  CAS  Google Scholar 

  26. D. Li, Z. Lu, J. Li, and L. Chen, J. Aeron. Mater., 29, 82 (2009).

    Google Scholar 

  27. B. Sun, R. Liu, and B. Gu, Compos. Mater. Sci., 65, 239 (2012).

    Article  CAS  Google Scholar 

  28. L. Jin, Z. Niu, B. C. Jin, B. Sun, and B. Gu, J. Reinf. Plast. Comp., 31, 935 (2012).

    Article  CAS  Google Scholar 

  29. S. Ekşi and K. Genel, Acta Phys. Pol. A, 128, B-59 (2015).

    Article  CAS  Google Scholar 

  30. A. Niknejad, A. Moradi, and N. Beheshti, Mater. Lett., 179, 142 (2016).

    Article  CAS  Google Scholar 

  31. I. B. Badriev, M. V. Makarov, and V. N. Paimushin, Procedia Eng., 150, 1056 (2016).

    Article  Google Scholar 

  32. M. S. Lee, H. Y. Seo, and C. G. Kang, Int. J. Pr. Eng. Man-GT, 3, 359 (2016).

    Google Scholar 

  33. W. Yuan and Y. Hu, J. Fiber Reinf. Plast/Compos., 2, 64 (2017).

    Google Scholar 

  34. Y. Ma, H. Wang, Z. Shao, Z. Yang, F. Shang, D. Hou, H. Geng, and G. Lv, J. Deep Space Exploration, 4, 346 (2017).

    Google Scholar 

  35. H. Ding, Master’s Thesis, Zhejiang Sci-Tech University, 1, 31 (2017).

    Google Scholar 

  36. Z. Yang, H. Wang, X. Ma, F. Shang, Y. Ma, Z. Shao, and D. Hou, Compos. Struct., 193, 154 (2018).

    Article  Google Scholar 

  37. H. Zhou, C. Li, L. Zhang, B. Crawford, A. S. Milani, and F. K. Ko, Compos. Sci. Technol., 155, 91 (2018).

    Article  CAS  Google Scholar 

  38. M. R. Bambach, Compos. Part B-Eng., 41, 550 (2010).

    Article  CAS  Google Scholar 

  39. R. A. Eshkoor, A. U. Ude, A. B. Sulong, R. Zulkifli, A. K. Ariffin, and C. H. Azhari, Compos. Part B-Eng., 77, 10 (2015).

    Article  CAS  Google Scholar 

  40. M. A. Sofuoğlu, S. Gürgen, F. H. Çakır, and S. Orak, Procedia Engineering, 182, 658 (2017).

    Article  CAS  Google Scholar 

  41. X. F. Hu, A. Haris, M. Ridha, V. B. C. Tan, and T. E. Tay, Compos. Struct., 189, 443 (2018).

    Article  Google Scholar 

  42. Dassault Systèmes®, Abaqus 6.14 Documentation: Abaqus Analysis User’s Guide, 2, 11 (2014).

  43. Y. Lin, Y. Huang, T. Huang, B. Liao, D. Zhang, and C. Li, Thin Wall Struct., 135, 494 (2019).

    Article  Google Scholar 

  44. A. Riccio, A. Sellitto, S. Saputo, A. Russo, M. Zarrelli, and V. Lopresto, Compos. Part B-Eng., 126, 60 (2017).

    Article  Google Scholar 

  45. A. Riccio, A. Raimondo, F. Di Caprio, M. Fusco, and P. Sanità, Compos. Part B-Eng., 150, 93 (2018).

    Article  CAS  Google Scholar 

  46. D. Cao, Q. Duan, H. Hu, Y. Zhong, and S. Li, Compos. Struct., 192, 300 (2018).

    Article  Google Scholar 

  47. E. J. Pineda and A. M. Waas, Int. J. Fracture, 182, 93 (2013).

    Article  Google Scholar 

  48. A. F. Johnson, Compos. Part A-Appl. Sci. Manuf., 32, 1197 (2001).

    Article  Google Scholar 

  49. F. K. Chang and G. S. Spring, J. Compos. Mater., 20, 30 (1986).

    Article  Google Scholar 

  50. M. L. Benzeggagh and M. Kenane, Compos. Sci. Technol., 56, 439 (1996).

    Article  CAS  Google Scholar 

  51. M. Schwab, M. Todt, M. Wolfahrt, and H. E. Pettermann, Compos. Sci. Technol., 128, 131 (2016).

    Article  CAS  Google Scholar 

  52. G. Wimmer and H. E. Pettermann, J. Compos. Mater., 43, 3303 (2009).

    Article  CAS  Google Scholar 

  53. J. Tao and C. T. Sun, J. Compos. Mater., 32, 1933 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the great support from the National Natural Science Foundation of China (11702249), and Zhejiang Provincial Natural Science Foundation of China (LGG19E050028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxiang Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Ma, H., Wu, Z. et al. Micro-XCT Characterization and Numerical Analysis of Bending Damage Mechanism in Carbon Fiber Plain, Twill and Winding Composite Tubes. Fibers Polym 21, 874–897 (2020). https://doi.org/10.1007/s12221-020-9274-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9274-4

Keywords

Navigation