Skip to main content
Log in

New insights into the alterations of full spectrum amino acids in human colostrum and mature milk between different domains based on metabolomics

  • Short Communication
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Amino acids (AAs) in milk constitute proteins, not only that, they also play a significant part in the body. However, in-depth analysis of AAs in human milk between different lactation periods and different domains is relatively scarce. Herein, free AAs in human colostrum (FHC) and mature milk (FHM), and insoluble-proteome AAs in human colostrum (IPHC) and mature milk (IPHM) were characterized, using metabolomics method based on iTRAQ combined with HPLC–MS/MS. A total of 35, 35, 30, and 30 AAs were characterized in FHC, FHM, IPHC, and IPHM, respectively. Moreover, 20 and 13 significantly differential amino acids (SDAAs) were identified in FHC vs. FHM group and IPHC vs. IPHM group, respectively. The interaction network of these SDAAs was further analyzed, and the SDAAs of these two groups were found to participate in 31 and 24 differential metabolic pathways, respectively. The profiles of free and insoluble-proteome AAs between human colostrum and mature milk were quite different, and the combination of these AAs could offer a better understanding of the changes in biochemical process in human milk, and could also furnish directions for the research into development of babies nutrition and milk powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Baldeón ME, Mennella JA, Flores N et al (2014) Free amino acid content in breast milk of adolescent and adult mothers in Ecuador. Springerplus 3:104. https://doi.org/10.1186/2193-1801-3-104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bruno AJ, Correa JR, Peláez-Abellán E, Urones-Garrote E (2018) A novel method for the functionalization of aminoacids L-glycine, L-glutamic acid and L-arginine on maghemite/magnetite nanoparticles. J Magn Magn Mater 456:87–91. https://doi.org/10.1016/j.jmmm.2018.02.010

    Article  CAS  Google Scholar 

  3. Demmelmair H, Koletzko B (2018) Lipids in human milk. Best Pract Res Cl En 32:57–68. https://doi.org/10.1016/j.beem.2017.11.002

    Article  CAS  Google Scholar 

  4. Picaud J-C, Buffin R (2017) Human milk—treatment and quality of banked human milk. Clin Perinatol 44:95–119. https://doi.org/10.1016/j.clp.2016.11.003

    Article  PubMed  Google Scholar 

  5. Mohan A, Rajendran SR, He Q et al (2015) Encapsulation of food protein hydrolysates and peptides: a review. Rsc Adv 5:79270–79278. https://doi.org/10.1039/c5ra13419f

    Article  CAS  Google Scholar 

  6. Castellote C, Casillas R, Ramírez-Santana C et al (2011) Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J Nutrition 141:1181–1187. https://doi.org/10.3945/jn.110.133652

    Article  CAS  Google Scholar 

  7. Eidelman AI (2012) Breastfeeding and the use of human milk: an analysis of the american academy of pediatrics 2012 breastfeeding policy statement. Breastfeed Med 7:323–324. https://doi.org/10.1089/bfm.2012.0067

    Article  PubMed  Google Scholar 

  8. Saadeh RM (2003) A new global strategy for infant and young child feeding. Forum Nutr 56:236–238

    PubMed  Google Scholar 

  9. Eriksen KG, Christensen SH, Lind MV, Michaelsen KF (2018) Human milk composition and infant growth. Curr Opin Clin Nutr 21:200–206. https://doi.org/10.1097/mco.0000000000000466

    Article  CAS  Google Scholar 

  10. Wu G, Wu Z, Dai Z et al (2013) Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 44:1107–1113. https://doi.org/10.1007/s00726-012-1444-2

    Article  CAS  PubMed  Google Scholar 

  11. van der Wielen N, Moughan PJ, Mensink M (2017) Amino acid absorption in the large intestine of humans and porcine models. J Nutrition 147:1493–1498. https://doi.org/10.3945/jn.117.248187

    Article  CAS  Google Scholar 

  12. Unger N, Holzgrabe U (2018) Stability and assessment of amino acids in parenteral nutrition solutions. J Pharmaceut Biomed 147:125–139. https://doi.org/10.1016/j.jpba.2017.07.064

    Article  CAS  Google Scholar 

  13. Xu Y, Xiao H (2017) Concentrations and nitrogen isotope compositions of free amino acids in Pinus massoniana (Lamb.) needles of different ages as indicators of atmospheric nitrogen pollution. Atmos Environ 164:348–359. https://doi.org/10.1016/j.atmosenv.2017.06.024

    Article  CAS  Google Scholar 

  14. Zhang Z, Adelman AS, Rai D et al (2013) Amino acid profiles in term and preterm human milk through lactation: a systematic review. Nutrients 5:4800–4821. https://doi.org/10.3390/nu5124800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rezaei R, Wu Z, Hou Y et al (2016) Amino acids and mammary gland development: nutritional implications for milk production and neonatal growth. J Anim Sci Biotechno 7:20. https://doi.org/10.1186/s40104-016-0078-8

    Article  CAS  Google Scholar 

  16. Gu H, Du J, Neto F et al (2015) Metabolomics method to comprehensively analyze amino acids in different domains. Analyst 140:2726–2734. https://doi.org/10.1039/c4an02386b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Osorio M, Moloney A, Brennan L, Monahan F (2012) Authentication of beef production systems using a metabolomic-based approach. Animal 6:167–172. https://doi.org/10.1017/s1751731111001418

    Article  CAS  PubMed  Google Scholar 

  18. Ferrandino A, Guidoni S (2009) Anthocyanins, flavonols and hydroxycinnamates: an attempt to use them to discriminate Vitis vinifera L. cv ‘Barbera’ clones. Eur Food Res Technol. https://doi.org/10.1007/s00217-009-1180-3

    Article  Google Scholar 

  19. Li M, Li W, Wu J et al (2019) Quantitative lipidomics reveals alterations in donkey milk lipids according to lactation. Food Chem. https://doi.org/10.1016/j.foodchem.2019.125866

    Article  PubMed  Google Scholar 

  20. Scano P, Murgia A, Demuru M et al (2016) Metabolite profiles of formula milk compared to breast milk. Food Res Int 87:76–82. https://doi.org/10.1016/j.foodres.2016.06.024

    Article  CAS  PubMed  Google Scholar 

  21. Scano P, Murgia A, Pirisi FM, Caboni P (2014) A gas chromatography-mass spectrometry-based metabolomic approach for the characterization of goat milk compared with cow milk. J Dairy Sci 97:6057–6066. https://doi.org/10.3168/jds.2014-8247

    Article  CAS  PubMed  Google Scholar 

  22. Dessì A, Murgia A, Agostino R et al (2016) Exploring the role of different neonatal nutrition regimens during the first week of life by urinary GC-MS metabolomics. Int J Mol Sci 17:265. https://doi.org/10.3390/ijms17020265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xi X, Kwok L-Y, Wang Y et al (2017) Ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry MSE-based untargeted milk metabolomics in dairy cows with subclinical or clinical mastitis. J Dairy Sci 100:4884–4896. https://doi.org/10.3168/jds.2016-11939

    Article  CAS  PubMed  Google Scholar 

  24. Tian H, Zheng N, Wang W et al (2016) Integrated metabolomics study of the milk of heat-stressed lactating dairy cows. Sci Rep-uk 6:24208. https://doi.org/10.1038/srep24208

    Article  CAS  Google Scholar 

  25. Li M, Kang S, Zheng Y et al (2019) Comparative metabolomics analysis of donkey colostrum and mature milk using ultra-high-performance liquid tandem chromatography quadrupole time-of-flight mass spectrometry. J Dairy Sci. https://doi.org/10.3168/jds.2019-17448

    Article  PubMed  Google Scholar 

  26. Ernoult E, Bourreau A, Gamelin E, Guette C (2010) A proteomic approach for plasma biomarker discovery with iTRAQ labelling and OFFGEL fractionation. J Biomed Biotechnol 2010:927917. https://doi.org/10.1155/2010/927917

    Article  CAS  PubMed  Google Scholar 

  27. Kambiranda D, Katam R, Basha SM, Siebert S (2013) iTRAQ-based quantitative proteomics of developing and ripening muscadine grape berry. J Proteome Res 13:555–569. https://doi.org/10.1021/pr400731p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang X, Han H, Zhao X et al (2018) Quantitative analysis of amino acids in human and bovine colostrum milk samples through iTRAQ labeling. J Sci Food Agr 98:5157–5163. https://doi.org/10.1002/jsfa.9032

    Article  CAS  Google Scholar 

  29. Li M, Li W, Kong F et al (2019) Metabolomics methods to analyze full spectrum of amino acids in different domains of bovine colostrum and mature milk. Eur Food Res Technol. https://doi.org/10.1007/s00217-019-03385-y

    Article  Google Scholar 

  30. Chong J, Xia J (2018) MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34:4313–4314. https://doi.org/10.1093/bioinformatics/bty528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Isaacs CE, Richard E, Thormar H (1995) Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. J Nutritional Biochem 6:362–366. https://doi.org/10.1016/0955-2863(95)80003-u

    Article  CAS  Google Scholar 

  32. Thormar H, Isaacs C, Brown H et al (1987) Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Ch 31:27–31. https://doi.org/10.1128/aac.31.1.27

    Article  CAS  Google Scholar 

  33. Agostoni C, Carratù B, Boniglia C et al (2000) Free glutamine and glutamic acid increase in human milk through a three-month lactation period. J Pediatr Gastr Nutr 31:508–512. https://doi.org/10.1097/00005176-200011000-00011

    Article  CAS  Google Scholar 

  34. Carratù B, Boniglia C, Scalise F et al (2003) Nitrogenous components of human milk: non-protein nitrogen, true protein and free amino acids. Food Chem 81:357–362. https://doi.org/10.1016/s0308-8146(02)00430-2

    Article  Google Scholar 

  35. Wu J, Domellöf M, Zivkovic AM et al (2016) NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation. Biochem Bioph Res Co 469:626–632. https://doi.org/10.1016/j.bbrc.2015.11.114

    Article  CAS  Google Scholar 

  36. Qian L, Zhao A, Zhang Y et al (2016) Metabolomic approaches to explore chemical diversity of human breast-milk, formula milk and bovine milk. Int J Mol Sci 17:2128. https://doi.org/10.3390/ijms17122128

    Article  CAS  PubMed Central  Google Scholar 

  37. Rao R (2012) Role of glutamine in protection of intestinal epithelial tight junctions. J Epithel Biology Pharmacol 5:47–54. https://doi.org/10.2174/1875044301205010047

    Article  CAS  Google Scholar 

  38. Demling RH (2009) Nutrition, anabolism, and the wound healing process: an overview. Eplasty 9:e9

    PubMed  PubMed Central  Google Scholar 

  39. Calder P, Yaqoob P (1999) Glutamine and the immune system. Amino Acids 17:227–241. https://doi.org/10.1007/bf01366922

    Article  CAS  PubMed  Google Scholar 

  40. Ren W, Li Y, Yu X et al (2013) Glutamine modifies immune responses of mice infected with porcine circovirus type 2. Brit J Nutr 110:1053–1060. https://doi.org/10.1017/s0007114512006101

    Article  CAS  PubMed  Google Scholar 

  41. Fan Y, Yu J, Kang W, Zhang Q (2009) Effects of glutamine supplementation on patients undergoing abdominal surgery. Chin Medical Sci J 24:55–59. https://doi.org/10.1016/s1001-9294(09)60060-2

    Article  CAS  Google Scholar 

  42. Kubomura D, Matahira Y, Masui A, Matsuda H (2009) Intestinal absorption and blood clearance of L-histidine-related compounds after ingestion of anserine in humans and comparison to anserine-containing diets. J Agr Food Chem 57:1781–1785. https://doi.org/10.1021/jf8030875

    Article  CAS  Google Scholar 

  43. Kaneko J, Enya A, Enomoto K et al (2017) Anserine (beta-alanyl-3-methyl-L-histidine) improves neurovascular-unit dysfunction and spatial memory in aged AβPPswe/PSEN1dE9 Alzheimer’s-model mice. Sci Rep-uk 7:12571. https://doi.org/10.1038/s41598-017-12785-7

    Article  CAS  Google Scholar 

  44. Stenflo J, Fernlund P, Egan W, Roepstorff P (1974) Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc National Acad Sci 71:2730–2733. https://doi.org/10.1073/pnas.71.7.2730

    Article  CAS  Google Scholar 

  45. Conn JP, Pin J-P (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol 37:205–237. https://doi.org/10.1146/annurev.pharmtox.37.1.205

    Article  CAS  Google Scholar 

  46. Felig P (1973) The glucose-alanine cycle. Metabolis 22:179–207. https://doi.org/10.1016/0026-0495(73)90269-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the by National Key R & D Program of China (Grant Number: 2018YFC1604302) and Shenyang Technological Innovation Project (Grant Number: Y17-0-028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Yang or Xiqing Yue.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Compliance with ethics requirements

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, Q., Zheng, Y. et al. New insights into the alterations of full spectrum amino acids in human colostrum and mature milk between different domains based on metabolomics. Eur Food Res Technol 246, 1119–1128 (2020). https://doi.org/10.1007/s00217-020-03470-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03470-7

Keywords

Navigation