Skip to main content
Log in

Characterization of natural Oenococcus oeni strains for Montepulciano d’Abruzzo organic wine production

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Montepulciano d'Abruzzo is a red wine grape variety of Vitis vinifera L., grown in Central Italy. It is mainly identified with Abruzzo region, where it currently accounts for around 50% of the regional vineyard. Malolactic fermentation (MLF) has a crucial role in red wines giving microbial stabilization, biological deacidification through the decarboxylation of l-malic acid to l( +)-lactic acid and carbon dioxide, and increasing complexity of wine aroma. Studies are focusing on the selection of yeast starter cultures for this wine, while few studies are available on malolactic bacteria. Therefore, a technological (ability to grow up at different pH, concentration of SO2, ethanol, presence of hdc, tdc and odc genes, conversion of malic acid into lactic acid) and genetic characterization of autochthonous Oenococcus oeni strains was performed. Moreover, O. oeni strain with the best traits was selected and produced by a local starter industry and used in cellar to produce Montepulciano d’Abruzzo organic wine without added SO2. Obtained wines not only maintained the typical traits of Montepulciano d’Abruzzo wines but also showed healthy characteristics since wines were histamine free. Selected starter is actually produced and dispensed on demand and in a frozen concentrate culture for wineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tofalo R, Perpetuini G, Fasoli G, Schirone M, Corsetti A, Suzzi G (2014) Biodiversity study of wine yeasts belonging to the “terroir” of Montepulciano d’Abruzzo “Colline Teramane” revealed Saccharomyces cerevisiae strains exhibiting atypical and unique 5.8 S-ITS restriction patterns. Food Microbiol 39:7–12

    CAS  PubMed  Google Scholar 

  2. Tofalo R, Patrignani F, Lanciotti R, Perpetuini G, Schirone M, Di Gianvito P, Pizzoni D, Arfelli G, Suzzi G (2016) Aroma profile of Montepulciano d’Abruzzo wine fermented by single and co-culture starters of autochthonous Saccharomyces and non-Saccharomyces yeasts. Front Microbiol 7:610

    PubMed  PubMed Central  Google Scholar 

  3. Suzzi G, Arfelli G, Schirone M, Corsetti A, Perpetuini G, Tofalo R (2012) Effect of grape indigenous Saccharomyces cerevisiae strains on Montepulciano d’Abruzzo red wine quality. Food Res Int 46:22–29

    CAS  Google Scholar 

  4. Suzzi G, Schirone M, Sergi M, Marianella RM, Fasoli G, Aguzzi I, Tofalo R (2012) Multistarter from organic viticulture for red wine Montepulciano d’Abruzzo production. Front Microbiol 3:135

    PubMed  PubMed Central  Google Scholar 

  5. Bartowsky E, Costello PJ, McCarthy JM (2008) MLF-adding an" extra dimension" to wine flavour and quality. Australian and New Zealand grapegrower and winemaker 533:60–65

    Google Scholar 

  6. Moreno-Arribas MV, Polo MC (2005) Winemaking biochemistry and microbiology: current knowledge and future trends. Crit Rev Food Sci Nutr 45:265–286

    CAS  PubMed  Google Scholar 

  7. Campbell-Sills H, Capozzi V, Romano A, Cappellina L, Spano G, Breniaux M, Lucas P, Biasioli F (2016) Advances in wine analysis by PTR-ToF-MS: Optimization of the method and discrimination of wines from different geographical origins and fermented with different malolactic starters. Int J Mass Spectrom 397:42–51

    Google Scholar 

  8. Carreté R, Reguant C, Rozès N, Constantí M, Bordons A (2006) Analysis of Oenococcus oeni strains in simulated microvinifications with some stress compounds. Am J Enol Viticult 57:356–362

    Google Scholar 

  9. Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, Coton E, Coton M, Barnavon L, Bach B, Rattray F, Bunte A, Magni C, Ladero V, Alvarez M, Fernández M, Lopez P, de Palencia PF, Corbi A, Trip H, Lolkema JS (2010) Biogenic amines in fermented foods. Eur J Clin Nutr 64:S95–S100

    CAS  PubMed  Google Scholar 

  10. Ruiz MJ, Zea L, Moyano L, Medina M (2010) Aroma active compounds during the drying of grapes cv. Pedro Ximenez destined to the production of sweet Sherry wine. Eur Food Res Technol 230:429

    CAS  Google Scholar 

  11. Capozzi V, Russo P, Beneduce L, Weidmann S, Grieco F, Guzzo J, Spano G (2010) Technological properties of Oenococcus oeni strains isolated from typical southern Italian wines. Lett Appl Microbiol 50:327–334

    CAS  PubMed  Google Scholar 

  12. Capozzi V, Russo P, Lamontanara A, Orrù L, Cattivelli L, Spano G (2014) Genome sequences of five Oenococcus oeni strains isolated from Nero Di Troia wine from the same terroir in Apulia, Southern Italy. Genome Announc 2:e01077–e1114

    PubMed  PubMed Central  Google Scholar 

  13. González-Arenzana L, López R, Portu J, Santamaría P, Garde-Cerdán T, López-Alfaro I (2014) Molecular analysis of Oenococcus oeni and the relationships among and between commercial and autochthonous strains. J Biosci Bioeng 118:272–276

    PubMed  Google Scholar 

  14. Englezos V, Torchio F, Vagnoli P, Krieger-Weber S, Rantsiou K, Cocolin L (2019) Impact of Saccharomyces cerevisiae strain selection on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni. Am J Enol Vitic. https://doi.org/10.5344/ajev.2019.19061

    Article  Google Scholar 

  15. Englezos V, Cachón DC, Rantsiou K, Blanco P, Petrozziello M, Pollon M, Giacosa S, Río Segade S, Rolle L, Cocolin L (2019) Effect of mixed species alcoholic fermentation on growth and malolactic activity of lactic acid bacteria. Appl Microbiol Biotechnol 103:7687–7702

    CAS  PubMed  Google Scholar 

  16. Maicas S, González-Cabo P, Ferrer S, Pardo I (1999) Production of Oenococcus oeni biomass to induce malolactic fermentation in wine by control of pH and substrate addition. Biotechnol Lett 21:349–353

    CAS  Google Scholar 

  17. Vigentini I, Praz A, Domeneghetti D, Zenato S, Picozzi C, Barmaz A, Foschino R (2016) Characterization of malolactic bacteria isolated from Aosta Valley wines and evidence of psychrotrophy in some strains. J Appl Microbiol 120:934–945

    CAS  PubMed  Google Scholar 

  18. Versavaud A, Couroux P, Roulland C, Dulau C, Hallet JN (1995) Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from wine-producing area of Charentes, France. Appl Environ Microbiol 61:3521–3529

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zapparoli G, Torriani S, Pesente P, Dellaglio F (1998) Design and evaluation of malolactic enzyme gene targeted primers for rapid identification and detection of Oenococcus oeni in wine. Lett Appl Microbiol 27:243–246

    CAS  PubMed  Google Scholar 

  20. Bringel F, Castioni A, Olukoya DK, Felis GE, Torriani S, Dellaglio F (2005) Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. Int J System Evol Microbiol 55:1629–1634

    CAS  Google Scholar 

  21. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tofalo R, Chaves-López C, Di Fabio F, Schirone M, Felis GE, Torriani S, Paparella A, Suzzi G (2009) Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must. Int J Food Microbiol 130:179–187

    CAS  PubMed  Google Scholar 

  23. Tristezza M, di Feo L, Tufariello M, Grieco F, Capozzi V, Spano G, Mita G, Grieco F (2016) Simultaneous inoculation of yeasts and lactic acid bacteria: Effects on fermentation dynamics and chemical composition of Negroamaro wine. LWT-Food Sci Technol 66:406–412

    CAS  Google Scholar 

  24. Tofalo R, Schirone M, Telera GC, Manetta AC, Corsetti A, Suzzi G (2011) Influence of organic viticulture on non-Saccharomyces wine yeast populations. Ann Microbiol 61:57–66

    CAS  Google Scholar 

  25. Carreté R, Vidal MT, Bordons A, Constantí M (2002) Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni. FEMS Microbiol Lett 211:155–159

    PubMed  Google Scholar 

  26. Romero J, Ilabaca C, Ruiz M, Jara C (2018) Oenococcus oeni in Chilean red wines: technological and genomic characterization. Front Microbiol 9:90

    PubMed  PubMed Central  Google Scholar 

  27. Zapparoli G, Fracchetti F, Stefanelli E, Torriani S (2012) Genetic and phenotypic strain heterogeneity within a natural population of Oenococcus oeni from Amarone wine. J Appl Microbiol 113:1087–1096

    CAS  PubMed  Google Scholar 

  28. Alegría E, López I, Ruiz JI, Sáenz J, Fernández E, Zarazaga M, Dizy M, Torres C, Ruiz-Larrea F (2004) High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol Lett 230:53–61

    Google Scholar 

  29. Solieri L, Genova F, De Paola M, Giudici P (2010) Characterization and technological properties of Oenococcus oeni strains from wine spontaneous malolactic fermentations: a framework for selection of new starter cultures. J Appl Microbiol 108:285–298

    CAS  PubMed  Google Scholar 

  30. Torriani S, Gatto V, Sembeni S, Tofalo R, Suzzi G, Belletti N, Gardini F, Bover-Cid S (2008) Rapid detection and quantification of tyrosine decarboxylase gene (tdc) and its expression in gram-positive bacteria associated with fermented foods using PCR-based methods. J Food Prot 71:93–101

    CAS  PubMed  Google Scholar 

  31. Coton E, Coton M (2005) Multiplex PCR for colony direct detection of Gram-positive histamine-and tyramine-producing bacteria. J Microbiol Methods 63:296–304

    CAS  PubMed  Google Scholar 

  32. Bonnin-Jusserand M, Grandvalet C, David V, Alexandre H (2011) Molecular cloning, heterologous expression, and characterization of ornithine decarboxylase from Oenococcus oeni. J Food Prot 74:1309–1314

    CAS  PubMed  Google Scholar 

  33. Lerm E, Engelbrecht L, Du Toit M (2011) Selection and characterisation of Oenococcus oeni and Lactobacillus plantarum South African wine isolates for use as malolactic fermentation starter cultures. S Afr J Enol Viticul 32:280–295

    CAS  Google Scholar 

  34. Berbegal C, Peña N, Russo P, Grieco F, Pardo I, Ferrer S, Spano G, Capozzi V (2016) Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiol 57:187–194

    CAS  PubMed  Google Scholar 

  35. Cappello MS, Zapparoli G, Logrieco A, Bartowsky EJ (2017) Linking wine lactic acid bacteria diversity with wine aroma and flavour. Int J Food Microbiol 243:16–27

    CAS  PubMed  Google Scholar 

  36. Spano G, Capozzi V (2011) Food microbial biodiversity and “microbes of protected origin”. Front Microbiol 2:237

    PubMed  PubMed Central  Google Scholar 

  37. Coucheney F, Desroche N, Bou M, Tourdot-Maréchal R, Dulau L, Guzzo J (2005) A new approach for selection of Oenococcus oeni strains in order to produce malolactic starters. Int J Food Microbiol 105:463–470

    CAS  PubMed  Google Scholar 

  38. Garofalo C, El Khoury M, Lucas P, Bely M, Russo P, Spano G, Capozzi V (2015) Autochthonous starter cultures and indigenous grape variety for regional wine production. J Appl Microbiol 118:1395–1408

    CAS  PubMed  Google Scholar 

  39. Reguant C, Carreté R, Constantí M, Bordons A (2005) Population dynamics of Oenococcus oeni strains in a new winery and the effect of SO2 and yeast strain. FEMS Microbiol Lett 246:111–117

    CAS  PubMed  Google Scholar 

  40. Seseña S, Sánchez I, Palop L (2005) Characterization of Lactobacillus strains and monitoring by RAPD-PCR in controlled fermentations of “Almagro” eggplants. Int J Food Microbiol 104:325–335

    PubMed  Google Scholar 

  41. Bon E, Delaherche A, Bilhère E, De Daruvar A, Lonvaud-Funel A, Le Marrec C (2009) Oenococcus oeni genome plasticity is associated with fitness. Appl Environ Microbiol 75:2079–2090

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bartowsky EJ (2017) Oenococcus oeni and the genomic era. FEMS Microbiol Rev 41:S84–S94

    PubMed  Google Scholar 

  43. da Silveira MG, Baumgärtner M, Rombouts FM, Abee T (2004) Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 70:2748–2755

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Guzzo F, Cappello MS, Azzolini M, Tosi E, Zapparoli G (2011) The inhibitory effects of wine phenolics on lysozyme activity against lactic acid bacteria. Int J Food Microbiol 148:184–190

    CAS  PubMed  Google Scholar 

  45. Bauer R, Dicks LM (2004) Control of malolactic fermentation in wine. A review. South Afr J Enol Viticul 25:74–88

    CAS  Google Scholar 

  46. Guzzo J, Jobin MP, Diviès C (1998) Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation. FEMS Microbiol Lett 160:43–47

    CAS  Google Scholar 

  47. Volschenk H, Van Vuuren HJJ, Viljoen-Bloom M (2006) Malic acid in wine: Origin, function and metabolism during vinification. S Afr J Enol Viticul 27:123–136

    CAS  Google Scholar 

  48. Guerrini S, Bastianini A, Blaiotta G, Granchi L, Moschetti G, Coppola S, Romano P, Vincenzini M (2003) Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines. Int J Food Microbiol 83:1–14

    CAS  PubMed  Google Scholar 

  49. Delaherche A, Bon E, Dupé A, Lucas M, Arveiler B, De Daruvar A, Lonvaud-Funel A (2006) Intraspecific diversity of Oenococcus oeni strains determined by sequence analysis of target genes. Appl Microbiol Biotechnol 73:394–403

    CAS  PubMed  Google Scholar 

  50. Marcobal A, De LasMoreno-Arribas RBMV, Munoz R (2005) Multiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bacteria in foods. J Food Prot 68:874–878

    CAS  PubMed  Google Scholar 

  51. Landete JM, Ferrer S, Pardo I (2007) Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Contr 18:1569–1574

    CAS  Google Scholar 

  52. Lucas PM, Claisse O, Lonvaud-Funel A (2008) High frequency of histamine-producing bacteria in the enological environment and instability of the histidine decarboxylase production phenotype. Appl Environ Microbiol 74:811–817

    CAS  PubMed  Google Scholar 

  53. Bordas M, Araque I, Alegret JO, El Khoury M, Lucas P, Rozès N, Reguant C, Bordons A (2013) Isolation, selection, and characterization of highly ethanol-tolerant strains of Oenococcus oeni from south Catalonia. Int Microbiol 16:113–123

    CAS  PubMed  Google Scholar 

  54. Ruiz P, Izquierdo PM, Seseña S, Palop ML (2010) Analysis of lactic acid bacteria populations during spontaneous malolactic fermentation of Tempranillo wines at five wineries during two consecutive vintages. Food Contr 21:70–75

    CAS  Google Scholar 

  55. Office Internationale de la Vigne et du Vin (2009) Compendium of international methods of wine and must analysis. International Organisation of Vine and Wine (OIV), Paris

  56. Balmaseda A, Bordons A, Reguant C, Bautista-Gallego J (2018) Non-Saccharomyces in wine: effect upon Oenococcus oeni and malolactic fermentation. Front Microbiol 9:534

    PubMed  PubMed Central  Google Scholar 

  57. Del Prete V, Costantini A, Cecchini F, Morassut M, Garcia-Moruno E (2009) Occurrence of biogenic amines in wine: the role of grapes. Food Chem 112:474–481

    Google Scholar 

  58. Arena ME, Manca de Nadra MC (2001) Biogenic amine production by Lactobacillus. J Appl Microbiol 90:158–162

    CAS  PubMed  Google Scholar 

  59. Bach B, Le Quere S, Vuchot P, Grinbaum M, Barnavon L (2012) Validation of a method for the analysis of biogenic amines: histamine instability during wine sample storage. Anal Chim Acta 732:114–119

    CAS  PubMed  Google Scholar 

  60. Anlı RE, Bayram M (2008) Biogenic amines in wines. Food Rev Int 25(1):86–102

    Google Scholar 

  61. Perpetuini G, Tittarelli F, Battistelli N, Arfelli G, Suzzi G, Tofalo R (2020) Biogenic amines in global beverages. In: Saad B, Tofalo R (eds) Biogenic amines in food: analysis, occurrence and toxicity. The Royal Society of Chemistry, pp 133–156

Download references

Acknowledgements

This research was supported by POR-FESR ABRUZZO 2014–2020 ATTIVITÀ I.1.4: “Sviluppo e validazione di un processo innovativo industriale per la fermentazione malolattica con microrganismi autoctoni in vini Montepulciano d'Abruzzo biologici senza solfiti aggiunti”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosanna Tofalo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

The authors declare that this research did not involve human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battistelli, N., Perpetuini, G., Perla, C. et al. Characterization of natural Oenococcus oeni strains for Montepulciano d’Abruzzo organic wine production. Eur Food Res Technol 246, 1031–1039 (2020). https://doi.org/10.1007/s00217-020-03466-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03466-3

Keywords

Navigation