Skip to main content
Log in

Polymorphic Transition of Pre-oriented Polybutene-1 under Tensile Deformation: In Situ FTIR Study

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Deformation-induced phase transition of Form II to Form I in polybutene-1 (PB-1) has been investigated by time-resolved Fourier transform infrared (FTIR) spectroscopy over a wide temperature range from 25 °C to 105 °C. The initial film sample containing orientated lamellae is prepared by pre-stretching of PB-1 melt followed by solidification. This is to realize a homogeneity of subsequent deformation at the mesoscale of lamellar stacks by avoiding large-scale spherulites. The deformation induced phase transition is recognized to occur with two stages: first, Form II undergoes the lamellar fragmentation, slipping or local melting after yielding to activate its transition to Form I, which may be realized by releasing the restrictions on chains translational movements in crystalline phase; second, the phase transition proceeds with a continuous dissipation of external work and determines the tensile mechanical response of film. To quantify the relationship between crystalline transition of Form II to Form I and external tensile field, a simple kinetic equation is well established based on FTIR measurement. The equation can describe not only the dependence of crystal transitional degree on applied specific work, but also the retardation effect of elevating temperature on phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grellmann, W.; Langer, B. Deformation and fracture behaviour of polymer materials. Springer, 2017.

  2. Lin, Y.; Li, X.; Meng, L.; Chen, X.; Lv, F.; Zhang, Q.; Zhang, R.; Li, L. Structural evolution of hard-elastic isotactic polypropylene film during uniaxial tensile deformation: the effect of temperature. Macromolecules2018, 51, 2690–2705.

    CAS  Google Scholar 

  3. Liu, S.; Zhang, F.; Zheng, G.; Dai, K.; Liu, C.; Shen, C.; Guo, J. Z. Direct microscopic observation of shish-kebab structure in high-temperature electrospun iPP fibers. Mater. Lett. 2016, 172, 149–152.

    CAS  Google Scholar 

  4. Zhang, X.; Wang, X.; Liu, X.; Lv, C.; Wang, Y.; Zheng, G.; Liu, H.; Liu, C.; Guo, Z.; Shen, C. Porous polyethylene bundles with enhanced hydrophobicity and pumping oil-recovery ability via skin-peeling. ACS Sustain. Chem. Eng. 2018, 6, 12580–12585.

    CAS  Google Scholar 

  5. Schultz, J. M.; Hsiao, B. S.; Samon, J. M. Structural development during the early stages of polymer melt spinning by in-situ synchrotron X-ray techniques. Polymer2000, 41, 8887–8895.

    CAS  Google Scholar 

  6. Shao, C.; Ma, Z.; Zhuo, R.; Zhang, R.; Shen, C. Inhomogeneous deformation of crystalline skeleton of syndiotactic polypropylene under uniaxial stretching. J. Mater. Sci. 2012, 47, 3334–3343.

    CAS  Google Scholar 

  7. Zhou, B.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Ma, Y.; Zhang, J. X.; Wang, N.; Shen, C.; Guo, Z. Continuously fabricated transparent conductive polycarbonate/carbon nanotube nanocomposite film for switchable thermochromic applications. J. Mater. Chem. C2018, 6, 8360–8371.

    CAS  Google Scholar 

  8. Wang, Y.; Liu, L.; Li, M.; Cao, W.; Liu, C.; Shen, C. Spectroscopic analysis of post drawing relaxation in poly(lactic acid) with oriented mesophase. Polym. Test. 2015, 43, 103–107.

    Google Scholar 

  9. Pan, Y.; Guo, X.; Zheng, G.; Liu, C.; Chen, Q.; Shen, C.; Liu, X. Shear-induced skin-core structure of molten isotactic polypropylene and the formation of β-crystal. Macromol. Mater. Eng. 2018, 303, 1800083.

    Google Scholar 

  10. Liu, X.; Lian, M.; Pan, Y.; Wang, X.; Zheng, G.; Liu, C.; Schubert, D. W.; Shen, C. An alternating skin-core structure in melt multi-injection-molded polyethylene. Macromol. Mater. Eng. 2018, 303, 1700465.

    Google Scholar 

  11. Lu, Y.; Men, Y. F. Initiation, development and stabilization of cavities during tensile deformation of semicrystalline polymers. Chinese J. Polym. Sci. 2018, 36, 1195–1199.

    CAS  Google Scholar 

  12. Wang, Z.; Liu, Y.; Liu, C.; Yang, J.; Li, L. Understanding structure-mechanics relationship of high density polyethylene based on stress induced lattice distortion. Polymer2019, 160, 170–180.

    CAS  Google Scholar 

  13. Peterlin, A. Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci. 1971, 6, 490–508.

    CAS  Google Scholar 

  14. Peterlin, A. Drawing and extrusion of semi-crystalline polymers. Colloid. Polym. Sci. 1987, 265, 357–382.

    CAS  Google Scholar 

  15. Flory, P. J.; Yoon, D. Y. Molecular morphology in semicrystalline polymers. Nature1978, 272, 226–229.

    CAS  Google Scholar 

  16. Hu, W. G.; Schmidt-Rohr, K. Polymer ultradrawability: the crucial role of a-relaxation chain mobility in the crystallites. Acta Polym. 1999, 50, 271–285.

    CAS  Google Scholar 

  17. Kang, J.; Miyoshi, T. Two chain-packing transformations and their effects on the molecular dynamics and thermal properties of a-form isotactic poly(propylene) under hot drawing: a solid-state nmr study. Macromolecules2014, 47, 2993–3004.

    CAS  Google Scholar 

  18. Butler, M. F.; Donald, A. M.; Bras, W.; Mant, G. R.; Derbyshire, G. E.; Ryan, A. J. A real-time simultaneous small-and wide-angle X-ray scattering study of in-situ deformation of isotropic polyethylene. Macromolecules1995, 28, 6383–6393.

    CAS  Google Scholar 

  19. Young, R. J.; Bowden, P. B. Twinning and martensitic transformations in oriented high-density polyethylene. Philos. Mag. 1974, 29, 1061–1073.

    CAS  Google Scholar 

  20. Chu, F.; Yamaoka, T.; Kimura, Y. Crystal transformation and micropore formation during uniaxial drawing of β-form polypropylene film. Polymer1995, 36, 2523–2530.

    CAS  Google Scholar 

  21. Li, J.; Cheung, W. On the deformation mechanisms of β-polypropylene: 1. Effect of necking on β-phase PP crystals. Polymer1998, 39, 6935–6940.

    CAS  Google Scholar 

  22. Sadler, D.; Barham, P. Structure of drawn fibres: 1. Neutron scattering studies of necking in melt-crystallized polyethylene. Polymer1990, 31, 36–42.

    CAS  Google Scholar 

  23. Karger-Kocsis, J. How does “phase transformation toughening” work in semicrystalline polymers? Polym. Eng. Sci. 1996, 36, 203–210.

    CAS  Google Scholar 

  24. Luciani, L.; Seppälä, J.; Löfgren, B. Poly-1-butene: its preparation, properties and challenges. Prog. Polym. Sci. 1988, 13, 37–62.

    CAS  Google Scholar 

  25. Maring, D.; Wilhelm, M.; Spiess, H. W.; Meurer, B.; Weill, G. Dynamics in the crystalline polymorphic forms I and II and form III of isotactic poly-1-butene. J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 2611–2624.

    CAS  Google Scholar 

  26. Nakamura, K.; Aoike, T.; Usaka, K.; Kanamoto, T. Phase transformation in poly(1-butene) upon drawing. Macromolecules1999, 32, 4975–4982.

    CAS  Google Scholar 

  27. Shieh, Y. T.; Lee, M. S.; Chen, S. A. Crystallization behavior, crystal transformation, and morphology of polypropylene/polybutene-1 blends. Polymer2001, 42, 4439–4448.

    CAS  Google Scholar 

  28. Nakafuku, C.; Miyaki, T. Effect of pressure on the melting and crystallization behaviour of isotactic polybutene-1. Polymer1983, 24, 141–148.

    CAS  Google Scholar 

  29. Goldbach, V. G. Zur Umwandlung der polymorphen Struktur von polybuten-1 unter der Wirkung mechanischer Spannungen. Angew. Makromol. Chem. 1973, 29, 213–227.

    Google Scholar 

  30. Goldbach, V. G. Spannungsinduzierte modifikationsumwandlung II nach I von polybuten-1. Angew. Makromol. Chem. 1974, 39, 175–188.

    CAS  Google Scholar 

  31. Tanaka, A.; Sugimoto, N.; Asada, T.; Onogi, S. Orientation and crystal transformation in polybutene-1 under stress relaxation. Polym. J. 1975, 7, 529.

    CAS  Google Scholar 

  32. Asada, T.; Sasada, J.; Onogi, S. Rheo-optical studies of high polymers. XXI. The deformation process and crystal transformation in polybutene-1. Polym. J. 1972, 3, 350.

    CAS  Google Scholar 

  33. Weynant, E.; Haudin, J.; G’sell, C. Plastic deformation and solidphase transformation in polybutene-1. J. Mater. Sci. 1982, 17, 1017–1035.

    CAS  Google Scholar 

  34. Yang, Y. C.; Geil, P. H. Deformation mechanisms of isotactic poly(1-butene). Makromol. Chem. 1985, 186, 1961–1978.

    CAS  Google Scholar 

  35. Liu, Y.; Cui, K.; Tian, N.; Zhou, W.; Meng, L.; Li, L.; Ma, Z.; Wang, X. Stretch-induced crystal-crystal transition of polybutene-1: an in situ synchrotron radiation wide-angle X-ray scattering study. Macromolecules2012, 45, 2764–2772.

    CAS  Google Scholar 

  36. Azzurri, F.; Flores, A.; Alfonso, G.; Baltá Calleja, F. Polymorphism of isotactic poly(1-butene) as revealed by microindentation hardness. 1. Kinetics of the transformation. Macromolecules2002, 35, 9069–9073.

    CAS  Google Scholar 

  37. Gohil, R.; Miles, M.; Petermann, J. On the molecular mechanism of the crystal transformation (tetragonal-hexagonal) in polybutene-1. J. Macromol. Sci., Phys. B1982, 21, 189–201.

    Google Scholar 

  38. Fujiwara, Y. II-I phase transformation of melt-crystallized oriented lamellae of polybutene-1 by shear deformation. Polym. Bull. 1985, 13, 253–258.

    CAS  Google Scholar 

  39. Cavallo, D.; Kanters, M. J.; Caelers, H. J.; Portale, G.; Govaert, L. E. Kinetics of the polymorphic transition in isotactic poly(1-butene) under uniaxial extension. New insights from designed mechanical histories. Macromolecules2014, 47, 3033–3040.

    CAS  Google Scholar 

  40. Miyoshi, T.; Mamun, A.; Reichert, D. Fast dynamics and conformations of polymer in a conformational disordered crystal characterized by 1H-13C wise NMR. Macromolecules2010, 43, 3986–3989.

    CAS  Google Scholar 

  41. Miyoshi, T.; Mamun, A. Critical roles of molecular dynamics in the superior mechanical properties of isotactic-poly(1-butene) elucidated by solid-state NMR. Polym. J. 2012, 44, 65–71.

    CAS  Google Scholar 

  42. Liu, Y.; Zhou, W.; Cui, K.; Tian, N.; Wang, X.; Liu, L.; Li, L.; Zhou, Y. Extensional rheometer for in situ X-ray scattering study on flow-induced crystallization of polymer. Rev. Sci. Instrum. 2011, 82, 045104.

    PubMed  Google Scholar 

  43. Lin, L.; Argon, A. Structure and plastic deformation of polyethylene. J. Mater. Sci. 1994, 29, 294–323.

    CAS  Google Scholar 

  44. Xiong, B.; Lame, O.; Seguela, R.; Men, Y. Micro/macro-stress relationship and local stress distribution in polyethylene spherulites upon uniaxial stretching in the small strain domain. Polymer2018, 140, 215–224.

    CAS  Google Scholar 

  45. Li, X.; Lin, Y.; Ji, Y.; Meng, L.; Zhang, Q.; Zhang, R.; Zhang, W.; Li, L. Strain and temperature dependence of deformation mechanism of lamellar stacks in HDPE and its guidance on microporous membrane preparation. Polymer2016, 105, 264–275.

    CAS  Google Scholar 

  46. Ukita, M. The vibrational spectra and vibrational assignments of isotactic polybutene-1. Bull. Chem. Soc. Jpn. 1966, 39, 742–749.

    CAS  Google Scholar 

  47. Chau, K.; Yang, Y.; Geil, P. Tetragonal→twinned hexagonal crystal phase transformation in polybutene-1. J. Mater. Sci. 1986, 21, 3002–3014.

    CAS  Google Scholar 

  48. Aronne, A.; Napolitano, R.; Pirozzi, B. Thermodynamic stabilities of the three crystalline forms of isotactic poly-1-butene as a function of temperature. Eur. Polym. J. 1986, 22, 703–706.

    CAS  Google Scholar 

  49. Shao, H. F.; Ma, Y. P.; Nie, H. R.; He, A. H. Solvent vapor annealing induced polymorphic transformation of polybutene-1. Chinese J. Polym. Sci. 2016, 34, 1141–1149.

    CAS  Google Scholar 

  50. He, A.; Xu, C.; Shao, H.; Yao, W.; Huang, B. Effect of molecular weight on the polymorphic transformation of isotactic poly(1-butene). Polym. Degrad. Stab. 2010, 95, 1443–1448.

    CAS  Google Scholar 

  51. Lotz, B.; Mathieu, C.; Thierry, A.; Lovinger, A.; de Rosa, C.; Ruiz de Ballesteros, O.; Auriemma, F. Chirality constraints in crystal-crystal transformations: isotactic poly(1-butene) versus syndiotactic polypropylene. Macromolecules1998, 31, 9253–9257.

    CAS  Google Scholar 

  52. Kopp, S.; Wittmann, J.; Lotz, B. Phase II to phase I crystal transformation in polybutene-1 single crystals: a reinvestigation. J. Mater. Sci. 1994, 29, 6159–6166.

    CAS  Google Scholar 

  53. Chen, W.; Li, X.; Li, H.; Su, F.; Zhou, W.; Li, L. Deformation-induced crystal-crystal transition of polybutene-1: an in situ FTIR imaging study. J. Mater. Sci. 2013, 48, 4925–4933.

    CAS  Google Scholar 

  54. Maruyama, M.; Sakamoto, Y.; Nozaki, K.; Yamamoto, T.; Kajioka, H.; Toda, A.; Yamada, K. Kinetic study of the II-I phase transition of isotactic polybutene-1. Polymer2010, 51, 5532–5538.

    CAS  Google Scholar 

  55. Qiao, Y.; Wang, Q.; Men, Y. Kinetics of nucleation and growth of form II to I polymorphic transition in polybutene-1 as revealed by stepwise annealing. Macromolecules2016, 49, 5126–5136.

    CAS  Google Scholar 

  56. Wang, Z.; Ma, Z.; Li, L. Flow-induced crystallization of polymers: molecular and thermodynamic considerations. Macromolecules2011, 49, 1505–1517.

    Google Scholar 

  57. Qiao, Y.; Wang, H.; Men, Y. Retardance of form II to form I transition in polybutene-1 at late stage: a proposal of a new mechanism. Macromolecules2018, 51, 2232–2239.

    CAS  Google Scholar 

  58. Lorenzo, A. T.; Arnal, M. L.; Albuerne, J.; Müller, A. J. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym. Test. 2007, 26, 222–231.

    CAS  Google Scholar 

  59. Piorkowska, E.; Galeski, A.; Haudin, J. M. Critical assessment of overall crystallization kinetics theories and predictions. Prog. Polym. Sci. 2001, 31, 549–575.

    Google Scholar 

  60. Mizushima, M.; Kawamura, T.; Takahashi, K.; Nitta, K. H. In situ near-infrared spectroscopic studies of the structural changes in polyethylene during tensile deformation. Polym. Test. 2014, 38, 81–86.

    CAS  Google Scholar 

  61. Nitta, K. H.; Takayanagi, M. Novel proposal of lamellar clustering process for elucidation of tensile yield behavior of linear polyethylenes. J. Macromol. Sci. Part B Phys. 2003, 42, 107–126.

    Google Scholar 

  62. Kim, J. M.; Locker, R.; Rutledge, G. C. Plastic deformation of semicrystalline polyethylene under extension, compression, and shear using molecular dynamics simulation. Macromolecules2014, 47, 2515–2528.

    CAS  Google Scholar 

  63. Séguéla, R. Plasticity of semi-crystalline polymers: crystal slip versus melting-recrystallization. e-Polymers2007, 7.

  64. Qiao, Y.; Men, Y. Intercrystalline links determined kinetics of form II to I polymorphic transition in polybutene-1. Macromolecules2017, 50, 5490–5497.

    CAS  Google Scholar 

  65. Qiao, Y.; Yang, F.; Lu, Y.; Liu, P.; Li, Y.; Men, Y. Spontaneous form II to I transition in low molar mass polybutene-1 at crystallization temperature reveals stabilization role of intercrystalline links and entanglements for metastable form II crystals. Macromolecules2018, 51, 8298–8305.

    CAS  Google Scholar 

  66. Hong, Y. I.; Miyoshi, T. Chain-folding structure of a semicrystalline polymer in bulk crystals determined by 13C-13C double quantum NMR. ACS Macro Lett. 2013, 2, 501–505.

    CAS  Google Scholar 

  67. Hong, Y. I.; Koga, T.; Miyoshi, T. Chain trajectory and crystallization mechanism of a semicrystalline polymer in melt-and solution-grown crystals as studied using 13C-13C double-quantum NMR. Macromolecules2015, 48, 3282–3293.

    CAS  Google Scholar 

  68. Shultz, J. Polymer crystallization. Oxford University Press, London, 2001.

    Google Scholar 

  69. Fatou, J. Morphology and crystallization in polyolefins. in Handbook of polyolefins. Marcel Dekker Inc., New York, 1993.

    Google Scholar 

  70. Maring, D.; Meurer, B.; Weill, G. 1H-NMR studies of molecular relaxations of poly-1-butene. J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 1235–1247.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51803189 and 51503186) and the Postdoctoral Science Foundation of China (No. 2018M630832).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Wang or Yan-Ping Liu.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chen, X., Zhang, C. et al. Polymorphic Transition of Pre-oriented Polybutene-1 under Tensile Deformation: In Situ FTIR Study. Chin J Polym Sci 38, 888–897 (2020). https://doi.org/10.1007/s10118-020-2409-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2409-7

Keywords

Navigation