Skip to main content
Log in

Polyphosphoester-modified Cellulose Nanocrystals for Stabilizing Pickering Emulsion Polymerization of Styrene

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The structure and properties of functional nanoparticles are important for stabilizing Pickering emulsion polymerization. Recently, cellulose nanocrystals (CNCs) are increasingly favored as a bio-based stabilizer for Pickering emulsions. In this study, we reported a novel functionalized polyphosphoester-grafted CNCs for the stabilization of oil-in-water Pickering emulsions and the emulsion polymerization of styrene. First, polyphosphoester containing an amino group at one end of the chain, abbreviated as PBYP-NH2, was prepared by ring-opening polymerization (ROP) and hydrolysis reaction, wherein PBYP represents poly[2-(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane]. Subsequently, CNC-COOH was obtained via 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation of CNCs. The functionalized nanocrystals CNC-PBYP-COOH with carboxyl groups and polyphosphoester on the surface were obtained by the amidation reaction of PBYP-NH2 with CNC-COOH. Finally, we used CNC-PBYP-COOH as sole particle emulsifiers to stabilize styrene-in-water Pickering emulsions and studied its effects on the emulsions in details by using dynamic light scattering (DLS). The results indicated that the properties of these emulsions depended on the concentration of hydrophobically modified CNCs, volume ratios of oil to water, and pH values. The modified CNCs had higher ability to stabilize the styrene-in-water emulsions relative to the unmodified CNCs, and a stable oil-in-water (o/w) Pickering emulsion with diameter of hundreds of nanometers could be obtained. The resulting emulsions could be polymerized to yield nanosized latexes. The polyphosphoester-modified CNCs as green particle emulsifiers can efficiently stabilize nanoemulsions and latexes, which would promote the development of novel environmentally friendly materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramsden, W. Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). Preliminary Account. Proc. R. Soc. London1903, 72, 156–164.

    CAS  Google Scholar 

  2. Pickering, S. U. CXCVI Emulsions. J. Chem. Soc., Trans.1907, 91, 2001–2021.

    Google Scholar 

  3. Chevalier, Y.; Bolzinger, M. A. Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf. A: Physicochem. Eng. Aspects.2013, 439, 23–34.

    CAS  Google Scholar 

  4. Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci.. 2003, 100–102, 503–546.

    Google Scholar 

  5. Zou, Z. M.; Sun, Z. Y.; An, L. J. Studies on droplet size distributions during coalescence in immiscible polymer blends filled with silica nanoparticles. Chinese J. Polym. Sci.2014, 32, 255–267.

    CAS  Google Scholar 

  6. Binks, B. P. Particles as surfactants-similarities and differences. Curr. Opin. Colloid Interface Sci.2002, 7, 21–41.

    CAS  Google Scholar 

  7. Arditty, S.; Schmitt, V.; Giermanska-Kahn, J.; Leal-Calderon, F. Materials based on solid-stabilized emulsions. J. Colloid Interface Sci.2004, 275, 659–664.

    CAS  PubMed  Google Scholar 

  8. Pang, K.; Ding, B. B.; Liu, X. T.; Wu, H.; Duan, Y. X.; Zhang, J. M. High-yield preparation of a zwitterionically charged chitin nanofiber and its application in a doubly pH-responsive Pickering emulsion. Green Chem.2017, 19, 3665–3670.

    CAS  Google Scholar 

  9. Yang, F.; Liu, S. Y.; Xu, J.; Lan, Q.; Wei, F.; Sun, D. J. Pickering emulsions stabilized solely by layered double hydroxides particles: the effect of salt on emulsion formation and stability. J. Colloid Interface Sci.2006, 302, 159–169.

    CAS  PubMed  Google Scholar 

  10. Tang, J. T.; Quinlan, P. J.; Tam, K. C. Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter.2015, 11, 3512–3529.

    CAS  PubMed  Google Scholar 

  11. Björkegren, S.; Nordstierna, L.; Törncrona, A.; Palmqvist, A. Hydrophilic and hydrophobic modifications of colloidal silica particles for Pickering emulsions. J. Colloid Interface Sci.2017, 487, 250–257.

    PubMed  Google Scholar 

  12. Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. X. Graphene oxide sheets at interfaces. J. Am. Chem. Soc.2010, 132, 8180–8186.

    CAS  PubMed  Google Scholar 

  13. Cui, Z. G.; Cui, C. F.; Zhu, Y.; Binks, B. P. Multiple phase inversion of emulsions stabilized by in situ.surface activation of CaCO3 nanoparticles via.adsorption of fatty acids. Langmuir2012, 28, 314–320.

    PubMed  Google Scholar 

  14. Voorn, D. J.; Ming, W.; van Herk, A. M. Polymer-clay nanocomposite latex particles by inverse Pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets. Macromolecules2006, 39, 2137–2143.

    CAS  Google Scholar 

  15. Wei, D.; Ge, L. L.; Lu, S. H.; Li, J. J.; Guo, R. Janus particles templated by Janus emulsions and application as a Pickering emulsifier. Langmuir2017, 33, 5819–5828.

    CAS  PubMed  Google Scholar 

  16. Wei, W.; Wang, T.; Luo, J.; Zhu, Y.; Gu, Y.; Liu, X. Y. Pickering emulsions stabilized by self-assembled colloidal particles of amphiphilic branched random poly(styrene-co-acrylic acid). Colloids Surf. A: Physicochem. Eng. Aspects2015, 487, 58–65.

    CAS  Google Scholar 

  17. Li, C.; Sun, P. D.; Yang, C. Emulsion stabilized by starch nanocrystals. Starch2012, 64, 497–502.

    CAS  Google Scholar 

  18. Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir2011, 27, 7471–7479.

    CAS  PubMed  Google Scholar 

  19. Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci.2007, 52, 1263–1334.

    CAS  Google Scholar 

  20. Tang, J. T.; Sisler, J.; Grishkewich, N.; Tam, K. C. Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci.2017, 494, 397–409.

    CAS  PubMed  Google Scholar 

  21. Gómez H, C.; Serpa, A.; Velásquez-Cock, J.; Gañán, P.; Castro, C.; Vélez, L.; Zuluaga, R. Vegetable nanocellulose in food science: a review. Food Hydrocolloids2016, 57, 178–186.

    Google Scholar 

  22. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev.2011, 40, 3941–3994.

    CAS  PubMed  Google Scholar 

  23. Mazeau, K.; Heux, L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B2003, 107, 2394–2403.

    CAS  Google Scholar 

  24. Oza, K. P.; Frank, S. G. Microcrystalline cellulose stabilized emulsions. J. Dispersion Sci. Technol.1986, 7, 543–561.

    CAS  Google Scholar 

  25. Li, X.; Ding, L.; Zhang, Y. C.; Wang, B. J.; Jiang, Y.; Feng, X. L.; Mao, Z. P.; Sui, X. F. Oil-in-water Pickering emulsions from three plant-derived regenerated celluloses. Carbohydr. Polym.2019, 207, 755–763.

    CAS  PubMed  Google Scholar 

  26. Saelices, C. J.; Save, M.; Capron, I. Synthesis of latex stabilized by unmodified cellulose nanocrystals: the effect of monomers on particle size. Polym. Chem.2019, 10, 727–737.

    Google Scholar 

  27. Saelices, C. J.; Capron, I. Design of Pickering micro- and nanoemulsions based on the structural characteristics of nanocelluloses. Biomacromolecules2018, 19, 460–469.

    Google Scholar 

  28. Xu, H. N.; Li, Y. H.; Zhang, L. F. Driving forces for accumulation of cellulose nanofibrils at the oil/water interface. Langmuir2018, 34, 10757–10763.

    CAS  PubMed  Google Scholar 

  29. Bai, L.; Huan, S. Q.; Xiang, W. C.; Rojas, O. J. Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chem.2018, 20, 1571–1582.

    CAS  Google Scholar 

  30. Lee, K. Y.; Blaker, J. J.; Murakami, R.; Heng, J. Y. Y.; Bismarck, A. Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils. Langmuir2014, 30, 452–460.

    CAS  PubMed  Google Scholar 

  31. Cunha, A. G.; Mougel, J. B.; Cathala, B.; Berglund, L. A.; Capron, I. Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir2014, 30, 9327–9335.

    CAS  PubMed  Google Scholar 

  32. Kalashnikova, I.; Bizot, H.; Bertoncini, P.; Cathala, B.; Capron, I. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter2013, 9, 952–959.

    CAS  Google Scholar 

  33. Zhang, Y. F.; Karimkhani, V.; Makowski, B. T.; Samaranayake, G.; Rowan, S. J. Nanoemulsions and nanolatexes stabilized by hydrophobically functionalized cellulose nanocrystals. Macromolecules2017, 50, 6032–6042.

    CAS  Google Scholar 

  34. Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev.2010, 110, 3479–3500.

    CAS  PubMed  Google Scholar 

  35. Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules2012, 13, 267–275.

    CAS  PubMed  Google Scholar 

  36. Capron, I.; Cathala, B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules2013, 14, 291–296.

    CAS  PubMed  Google Scholar 

  37. Peddireddy, K. R.; Nicolai, T.; Benyahia, L.; Capron, I. Stabilization of water-in-water emulsions by nanorods. ACS Macro Lett. 2016, 5. 283–286.

    CAS  Google Scholar 

  38. Cherhal, F.; Cousin, F.; Capron, I. Structural description of the interface of Pickering emulsions stabilized by cellulose nanocrystals. Biomacromolecules2016, 17, 496–502.

    CAS  PubMed  Google Scholar 

  39. Hu, Z.; Ballinger, S.; Pelton, R.; Cranston, E. D. Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J. Colloid Interface Sci.2015, 439, 139–148.

    CAS  PubMed  Google Scholar 

  40. Saidane, D.; Perrin, E.; Cherhal, F.; Guellec, F.; Capron, I. Some modification of cellulose nanocrystals for functional Pickering emulsions. Philos. Trans. R. Soc., A.2016, 374. 20150139.

    Google Scholar 

  41. Zoppe, J. O.; Venditti, R. A.; Rojas, O. J. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. J. Colloid Interface Sci.2012, 369, 202–209.

    CAS  PubMed  Google Scholar 

  42. Tang, J. T.; Lee, M. F. X.; Zhang, W.; Zhao, B. X.; Berry, R. M.; Tam, K. C. Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules2014, 15, 3052–3060.

    CAS  PubMed  Google Scholar 

  43. Gupta, A.; Eral, H. B.; Hatton, T. A.; Doyle, P. S. Nanoemulsions: formation, properties and applications. Soft Matter2016, 12, 2826–2841.

    CAS  PubMed  Google Scholar 

  44. Fryd, M. M.; Mason, T. G. Advanced nanoemulsions. Annu. Rev. Phys. Chem.2012, 63, 493–518.

    CAS  PubMed  Google Scholar 

  45. Arancibia, C.; Navarro-Lisboa, R.; Zúñiga, R. N.; Matiacevich, S. Application of CMC as thickener on nanoemulsions based on olive oil: physical properties and stability. Int. J. Polym. Sci.2016, 2016, 1–10.

    Google Scholar 

  46. Singh, Y.; Meher, J. G.; Raval, K.; Khan, F. A.; Chaurasia, M.; Jain, N. K.; Chourasia, M. K. Nanoemulsion: concepts, development and applications in drug delivery. J. Control. Release. 2017, 252, 28–49.

    CAS  PubMed  Google Scholar 

  47. Sonneville-Aubrun, O.; Simonnet, J. T.; L’Alloret, F. Nanoemulsions: a new vehicle for skincare products. Adv. Colloid Interface Sci.. 2004, 108–109. 145–149.

    PubMed  Google Scholar 

  48. Bauer, K. N.; Tee, H. T.; Velencoso, M. M.; Wurm, F. R. Main-chain poly(phosphoester)s: history, syntheses, degradation, bio-and flame-retardant applications. Prog. Polym. Sci.2017, 73, 61–122.

    CAS  Google Scholar 

  49. Wang, H. R.; He, J. L.; Zhang, M. Z.; Tam, K. C.; Ni, P. H. A new pathway towards polymer modified cellulose nanocrystals via.a “grafting onto” process for drug delivery. Polym. Chem.. 2015, 6, 4206–4209.

    CAS  Google Scholar 

  50. Zhang, S. Y.; Li, A.; Zou, J.; Lin, L. Y.; Wooley, K. L. Facile synthesis of clickable, water-soluble and degradable polyphosphoesters. ACS Macro Lett. 2012, 1, 328–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Habibi, Y.; Chanzy, H.; Vignon, M. R. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose. 2006, 13, 679–687.

    CAS  Google Scholar 

  52. Way, A. E.; Hsu, L.; Shanmuganathan, K.; Weder, C.; Rowan, S. J. pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett.. 2012, 1, 1001–1006.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21975169 and 21374066), the Major Program of the Natural Science Project of Jiangsu Higher Education Institutions (No. 15KJA150007), the Natural Science Foundation of Jiangsu Province (No. BK20171212), a Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, and Soochow-Waterloo University Joint Project for Nanotechnology from Suzhou Industrial Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Hong Ni.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, KM., Zhang, MZ., He, JL. et al. Polyphosphoester-modified Cellulose Nanocrystals for Stabilizing Pickering Emulsion Polymerization of Styrene. Chin J Polym Sci 38, 921–931 (2020). https://doi.org/10.1007/s10118-020-2404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2404-z

Keywords

Navigation