Skip to main content

Advertisement

Log in

Weighted gradient inequalities and unique continuation problems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We use Pitt inequalities for the Fourier transform to prove the following weighted gradient inequality

$$\begin{aligned} \Vert e^{-\tau \ell (\cdot )} u^{\frac{1}{q}} f\Vert _q\le c_\tau \Vert e^{-\tau \ell (\cdot )} v^{\frac{1}{p}}\, \nabla f\Vert _p, \quad f\in C^\infty _0({\mathbb {R}}^n). \end{aligned}$$

This inequality is a Carleman-type estimate that yields unique continuation results for solutions of first order differential equations and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barostichi, R.F., Cordaro, P.D., Petronilho, G.: Strong unique continuation for systems of complex vector fields. Bull. Sci. Math. 138(4), 457–469 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Google Scholar 

  3. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weight. Compos. Math. 53, 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  4. Carleman, T.: Sur un probleme d’unicite’ pur les systemes d’equations aux derivees partielles a deux variables independantes. Ark. Mat. Astr. Fys. 26(17), 9 (1939)

    MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G., Mardare, C.: On rigid and infinitesimal rigid displacements in shell theory. J. Math. Pures Appl. (9) 83(1), 1–15 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Cnops, J.: An Introduction to Dirac Operators on Manifolds. Springer, Berlin (2012)

    MATH  Google Scholar 

  7. Cosner, C.: On the definition of ellipticity for systems of partial differential equations. J. Math. Anal. Appl. 158(1), 80–93 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Cuesta, M., Ramos Quoirin, H.: A weighted eigenvalue problem for the \(p\)-Laplacian plus a potential. Nonlinear Differ. Equ. Appl. 16, 469–491 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Douglis, A.: Uniqueness in Cauchy problems for elliptic systems of equations. Commun. Pure Appl. Math. 6, 291–298 (1953)

    MathSciNet  MATH  Google Scholar 

  10. Dupaigne, L.: Stable Solutions of Elliptic Partial Differential Equations, Monographs and Surveys in Pure and Applied Mathematics. CRC Press, Boca Raton (2011)

    Google Scholar 

  11. De Carli, L., Edward, J., Hudson, S., Leckband, M.: Minimal support results for Schrödinger’s equation. Forum Math. 27(1), 343–371 (2015)

    MathSciNet  MATH  Google Scholar 

  12. De Carli, L., Gorbachev, D., Tikhonov, S.: Pitt inequalities and restriction theorems for the Fourier transform. Rev. Mat. Iberoam. 33(3), 789–808 (2017)

    MathSciNet  MATH  Google Scholar 

  13. De Carli, L., Hudson, S.: Geometric remarks on the level curves of harmonic functions. Bull. Lond. Math. Soc. 42(1), 83–95 (2010)

    MathSciNet  MATH  Google Scholar 

  14. De Carli, L., Nacinovich, M.: Unique continuation in abstract pseudoconcave CR manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27(1), 27–46 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Douglis, A., Nirenberg, L.: Interior estimates for elliptic systems of partial differential equations. Commun. Pure Appl. Math. 8, 503–538 (1955)

    MathSciNet  MATH  Google Scholar 

  16. De Carli, L., Okaji, T.: Strong unique continuation for the Dirac operator. Publ. Res. Inst. Math. Sci. 35(6), 825–846 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Edward, J., Hudson, S., Leckband, M.: Existence problems for the \(p\)-Laplacian. Forum Math. 27(2), 1203–1225 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  19. Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Fall, M.M.: Semilinear Elliptic Equations for the Fractional Laplacian with Hardy Potential. arXiv:1109.5530v4 (2011)

  21. Fall, M.M., Felli, V.: Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete Contin. Dyn. Syst. 35(12), 5827–5867 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Ferrari, F., Valdinoci, E.: Some weighted Poincaré inequalities. Indiana Univ. Math. J. 58(4), 1619–1637 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Filippucci, R., Pucci, P., Rigoli, M.: Nonlinear weighted \(p\)-Laplacian elliptic inequalities with gradient terms. Commun. Contemp. Math. 12(3), 501–535 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Hayashida, K.: Unique continuation theorem of elliptic systems of partial differential equations. Proc. Jpn. Acad. 38, 630–635 (1962)

    MathSciNet  MATH  Google Scholar 

  25. Heinig, H.P.: Weighted Sobolev inequalities for gradients. In: Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis, pp. 17–23. Birkhäuser, Springer, Cham, Switzerland (2006)

  26. Heinig, H.P.: Weighted norm inequalities for classes of operators. Indiana Univ. Math. J. 33(4), 573–582 (1984)

    MathSciNet  MATH  Google Scholar 

  27. Herbst, I.W.: Spectral theory of the operator \( (p ^2 + m^2)^{ 1/2} -Ze^2/r\). Commun. Math. Phys. 53(3), 285–294 (1977)

    MATH  Google Scholar 

  28. Horiuchi, T.: Best constant in weighted sobolev inequality with weights being powers of distance from the origin. J. Inequal. Appl. 1, 275–292 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Hile, G.N., Protter, M.H.: Unique continuation and the Cauchy problem for first order systems of partial differential equations. Commun. Partial Differ. Equ. 1(5), 437–465 (1976)

    MathSciNet  MATH  Google Scholar 

  30. Jerison, D.: Carleman inequalities for the Dirac and Laplace operators and unique continuation. Adv. Math. 62(2), 118–134 (1986)

    MathSciNet  MATH  Google Scholar 

  31. Jerison, D., Kenig, C.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121, 463–494 (1985)

    MathSciNet  MATH  Google Scholar 

  32. Jurkat, W., Sampson, G.: On rearrangement and weight inequalities for the Fourier transform. Indiana Univ. Math. J. 33, 257–270 (1984)

    MathSciNet  MATH  Google Scholar 

  33. Kalf, H., Yamada, O.: Note on the paper: “Strong unique continuation property for the Dirac equation” by L. De Carli and T. Ōkaji. Publ. Res. Inst. Math. Sci. 35(6), 847–852 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Khafagy, S.A.: On positive weak solution for a nonlinear system involving weighted \(p\)-Laplacian. J. Adv. Res. Dyn. Control Syst. 4(4), 50–58 (2012)

    MathSciNet  Google Scholar 

  35. Kenig, C., Ruiz, A., Sogge, C.D.: Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55(2), 329–347 (1987)

    MathSciNet  MATH  Google Scholar 

  36. Koch, H., Tataru, D.: Carleman estimates and absence of embedded eigenvalues. Commun. Math. Phys. 267(2), 419–449 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Koch, H., Tataru, D.: Recent results on unique continuation for second order elliptic equations. In: Carleman Estimates and Applications to Uniqueness and Control Theory (Cortona, 1999), Progress in Nonlinear Differential Equations and Their Applications, vol. 46. pp. 73–84. Birkhäuser Boston, Boston, MA (2001)

  38. Lakey, J.D.: Weighted Fourier transform inequalities via mixed norm Hausdorff–Young inequalities. Can. J. Math. 46(3), 586–601 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Lankeit, J., Neff, P., Pauly, D.: Unique continuation for first-order systems with integrable coefficients and applications to elasticity and plasticity. C. R. Math. Acad. Sci. Paris 351(5–6), 247–250 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Levitan, B.M., Sargsjan, I.S.: Introduction to Spectral Theory: Self Adjoint Ordinary Differential Operators, Translations of Mathematical Monographs, vol. 39. American Mathematical Society, Providence (1975)

    Google Scholar 

  41. Long, R., Nie, F.: Weighted Sobolev inequality and eigenvalue estimates of Schrödinger operators. Lect. Notes Math. 1494, 131–141 (1990)

    MATH  Google Scholar 

  42. Maz’ya, V.G.: Sobolev Spaces. Springer, Berlin (1985)

    MATH  Google Scholar 

  43. Muckenhoupt, B.: Weighted norm inequalities for the Fourier transform. Trans. Am. Math. Soc. 276, 729–742 (1983)

    MathSciNet  MATH  Google Scholar 

  44. Okaji, T.: Strong unique continuation property for elliptic systems of normal type in two independent variables. Tohoku Math. J. (2) 54(2), 309–318 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Okaji, T.: Strong unique continuation property for first order elliptic systems. In: Carleman Estimates and Applications to Uniqueness and Control Theory (Cortona, 1999), Progress in Nonlinear Differential Equations and Their Applications, vol. 46, pp. 149–164. Birkhäuser Boston, Boston, MA (2001)

  46. Pérez, C.: Sharp \(L^p\)-weighted Sobolev inequalities. Ann. Inst. Fourier (Grenoble) 45(3), 809–824 (1995)

    MathSciNet  MATH  Google Scholar 

  47. Ruf, B.: Superlinear elliptic equations and systems. In: Chipot, M. (ed.) Handbook of Differential Equations. Stationary Partial Differential Equations, vol. 5, pp. 211–276. Elsevier, Amsterdam (2008)

    MATH  Google Scholar 

  48. Sawyer, E.T.: A characterization of two weight norm inequalities for fractional fractional and Poisson integrals. Trans. Am. Math. Soc. 308, 533–545 (1988)

    MathSciNet  MATH  Google Scholar 

  49. Sawyer, E., Wheeden, R.L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am. J. Math. 114(4), 813–874 (1992)

    MathSciNet  MATH  Google Scholar 

  50. Simon, B.: On positive eigenvalues of one-body Schrödinger operators. Commun. Pure Appl. Math. 22, 531–538 (1969)

    MATH  Google Scholar 

  51. Simon, B.: Schrodinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982)

    MathSciNet  MATH  Google Scholar 

  52. Sogge, C.D.: Strong uniqueness theorems for second order elliptic differential equations. Am. J. Math. 112(6), 943–984 (1990)

    MathSciNet  MATH  Google Scholar 

  53. Sinnamon, G.: A weighted gradient inequality. Proc. R. Soc. Edinb. Sect. A 111(3–4), 329–335 (1989)

    MathSciNet  MATH  Google Scholar 

  54. Tamura, M.: A note on strong unique continuation for normal elliptic systems with Gevrey coefficients. J. Math. Kyoto Univ. 49(3), 593–601 (2009)

    MathSciNet  MATH  Google Scholar 

  55. Tataru, D.: Unique continuation problems for partial differential equations. In: Geometric Methods in Inverse Problems and PDE Control, The IMA Volumes in Mathematics and Its Applications, vol. 137. pp. 239–255. Springer, New York (2004)

  56. Uryu, H.: The local uniqueness of some characteristic Cauchy problems for the first order systems. Funkcialaj Ekvacioj 38, 21–36 (1995)

    MathSciNet  MATH  Google Scholar 

  57. Wolff, T.: Recent work on sharp estimates in second order elliptic unique continuation problems. In: Garcia-Cuerva, J., Hernandez, E., Soria, F., Torrea, J.L. (eds.) Fourier Analysis and Partial Differential Equations. Studies in Advanced Mathematics, pp. 99–128. CRC Press, Boca Raton (1995)

    Google Scholar 

  58. Yang, Q., Lian, B.: On the best constant of weighted Poincaré inequalities. J. Math. Anal. Appl. 377(1), 207–215 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura De Carli.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

D. G. was supported by the Russian Science Foundation under Grant 18-11-00199. S. T. was partially supported by MTM 2017-87409-P, 2017 SGR 358, and by the CERCA Programme of the Generalitat de Catalunya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Carli, L., Gorbachev, D. & Tikhonov, S. Weighted gradient inequalities and unique continuation problems. Calc. Var. 59, 89 (2020). https://doi.org/10.1007/s00526-020-1716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-1716-8

Mathematics Subject Classification

Navigation