Skip to main content
Log in

Vertical Vibrations of Suspension Bridges: A Review and a New Method

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

A Correction to this article was published on 20 September 2022

This article has been updated

Abstract

Suspension bridges offer an elegant and economical solution for bridging over long spans with resultant low material content and ease of construction. Classical analytical methods for the linear vertical vibrations of a suspension bridge usually ignores the flexibility of hangers and bending stiffness of the main cable, and the bending stiffness and mass of the stiffening girder are uniformly distributed to the main cable. However, results show that the flexibility of the hangers has a significant effect on higher-order modal frequencies and may loss some modal information when using the inextensible hanger assumption. In view of this, this paper developed a succinct and universal analytical method for vertical flexural vibration analysis of the suspension bridge, which truly considers the vertical support stiffness of each hanger for the first time. The comparison with finite element solutions and field measurement results shows that the calculation accuracy of the proposed method is significantly improved compared with the classical analytical method. The calculation error of this paper is basically below 5%, besides, the mode-missing problem existing in the classical analytical methods is well solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. Irvine HM (1988) CABLE structures. MIT Press, Cambridge

    Google Scholar 

  2. Triantafyllou M (1991) Dynamics of cables, towing cables and mooring systems. Shock Vib Dig 23:3–8

    Article  Google Scholar 

  3. Triantafyllou M (1987) Dynamics of cables and chains. Shock Vib Dig 19:3–5

    Article  Google Scholar 

  4. Starossek U (1994) Cable dynamics—a review. Struct Eng Int 4:171–176

    Article  Google Scholar 

  5. Routh EJ (2013) The advanced part of a treatise on the dynamics of a system of rigid bodies. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Rohrs J (1851) On the oscillations of a suspension chain. Trans Camb Philos Soc 9:379

    Google Scholar 

  7. Irvine HM, Caughey TK (1974) The linear theory of free vibrations of a suspended cable. Proc R Soc Lond A Math Phys Sci 341:299–315

    Google Scholar 

  8. Irvine HM, Griffin J (1976) On the dynamic response of a suspended cable. Earthq Eng Struct Dyn 4:389–402

    Article  Google Scholar 

  9. Irvine HM (1980) The estimation of earthquake-generated additional tension in a suspension bridge cable. Earthq Eng Struct Dyn 8:267–273

    Article  MATH  Google Scholar 

  10. West HH, Suhoski JE, Geschwindner LF Jr (1984) Natural frequencies and modes of suspension bridges. J Struct Eng 110(10):2471–2486

    Article  Google Scholar 

  11. Buonopane SG, Billington DP (1993) Theory and history of suspension bridge design from 1823 to 1940. J Struct Eng 119(3):954–977

    Article  Google Scholar 

  12. Roads USBoP (1950) The mathematical theory of vibration in suspension bridges. US Department of Commerce, Bureau of Public Roads, Washington

    Google Scholar 

  13. Hayashikawa T, Watanabe N (1984) Vertical vibration in Timoshenko beam suspension bridges. J Eng Mech 110(3):341–356

    Google Scholar 

  14. Kim MY, Kwon SD, Kim NI (2000) Analytical and numerical study on free vertical vibration of shear-flexible suspension bridges. J Sound Vib 238(1):65–84

    Article  Google Scholar 

  15. Abdel-Ghaffar A (1982) Suspension bridge vibration: continuum formulation. J Eng Mech Div 108:1215–1232

    Article  Google Scholar 

  16. Turmo J, Luco JE (2010) Effect of hanger flexibility on dynamic response of suspension bridges. J Eng Mech ASCE 136(12):1444–1459

    Article  Google Scholar 

  17. Larsen A, Gimsing NJ (1992) Wind engineering aspects of the east bridge tender project. J Wind Eng Ind Aerodyn 42(1):1405–1416

    Article  Google Scholar 

  18. Xun J, He S, Song T (2016) Estimation frequency formulas for vertical vibration for three-span continuous system suspension bridge considering tower stiffness influence. J Beijing Univ Technol 42(11):1697–1702

    Google Scholar 

  19. Konishi I (1960) Earthquake responses of a long span suspension bridge. In: Proceedings of the 2WCEE, 1960, vol 2, pp 863–878

  20. Abdel-Ghaffar AM (1978) Free lateral vibrations of suspension bridges. J Struct Div 104(3):503–525

    Article  Google Scholar 

  21. Hua X et al (2007) Flutter analysis of long-span bridges using ANSYS. Wind Struct 10(1):61–82

    Article  Google Scholar 

  22. Ganev T et al (1998) Response analysis of the Higashi-Kobe bridge and surrounding soil in the 1995 Hyogoken-Nanbu earthquake. Earthq Eng Struct Dyn 27(6):557–576

    Article  Google Scholar 

  23. Abdel-Ghaffar A (1978) Free lateral vibrations of suspension bridges. ASCE J Struct Div 104:503–525

    Article  Google Scholar 

  24. Hua XG et al (2007) Flutter analysis of long-span bridges using ANSYS. Wind Struct Int J 10(1):61–82

    Article  Google Scholar 

  25. Li ZX et al (2007) Multi-scale numerical analysis on dynamic response and local damage in long-span bridges. Eng Struct 29(7):1507–1524

    Article  Google Scholar 

  26. Talvik I (2001) Finite element modelling of cable networks with flexible supports. Comput Struct 79(26):2443–2450

    Article  Google Scholar 

  27. Kanno Y, Ohsaki M, Ito J (2002) Large-deformation and friction analysis of non-linear elastic cable networks by second-order cone programming. Int J Numer Methods Eng 55(9):1079–1114

    Article  MathSciNet  MATH  Google Scholar 

  28. Jayaraman HB, Knudson WC (1981) A curved element for the analysis of cable structures. Comput Struct 14(3):325–333

    Article  Google Scholar 

  29. Sadaoui A, Lattari K, Khennane A (2016) A novel analytical method for the analysis of a bi-concave cable-truss footbridge. Eng Struct 123:97–107

    Article  Google Scholar 

  30. Kang H, Xie W, Guo T (2016) Modeling and parametric analysis of arch bridge with transfer matrix method. Appl Math Model 40(23–24):10578–10595

    Article  MathSciNet  MATH  Google Scholar 

  31. Jie JBGJZ (2004) Structural calculation of steel cable-stayed bridges with transfer matrix method. J Southeast Univ Nat Sci Ed 34(6):838–841

    Google Scholar 

  32. Zhao Y, Kang H (2008) In-plane free vibration analysis of cable–arch structure. J Sound Vib 312(3):363–379

    Article  Google Scholar 

  33. Wang Z et al (2014) Modeling and parameter analysis of in-plane dynamics of a suspension bridge with transfer matrix method. Acta Mech 225(12):3423–3435

    Article  MathSciNet  MATH  Google Scholar 

  34. Xia Q et al (2017) In-service condition assessment of a long-span suspension bridge using temperature-induced strain data. J Bridge Eng 22(3):04016124

    Article  Google Scholar 

  35. Dan D, Han F, Cheng W, Xu B (2019) Unified modal analysis of complex cable systems via extended dynamic stiffness method and enhanced computation. Struct Control Health Monit 26(10):e2435

    Article  Google Scholar 

  36. Fei H, Danhui D (2020) Free vibration of the complex cable system—an exact method using symbolic computation. Mech Syst Signal Process 139:106636

    Article  Google Scholar 

  37. Han F, Dan D, Cheng W (2019) Exact dynamic characteristic analysis of a double-beam system interconnected by a viscoelastic layer. Compos B Eng 163:272–281

    Article  Google Scholar 

  38. Han F, Dan D, Cheng W (2018) An exact solution for dynamic analysis of a complex double-beam system. Compos Struct 193:295–305

    Article  Google Scholar 

  39. Fei H, Dan D, Cheng W, Zang JB (2020) A novel analysis method for damping characteristic of a type of double-beam systems with viscoelastic layer. Appl Math Model 80:911–928

    Article  MathSciNet  MATH  Google Scholar 

  40. Ewins DJ (1984) Modal testing: theory and practice. Research Studies Press, Taunton, p 109

    Google Scholar 

  41. Heylen W, Lammens S, Sas P (1997) Modal analysis theory and testing. Commun Mag IEEE 22(5):64–70

    Google Scholar 

  42. Darbre GR (1982) Studies of dynamic response of a guyed tower. Diss., Rice University. https://hdl.handle.net/1911/15673

  43. Williams FW, Wittrick WH (1970) An automatic computational procedure for calculating natural frequencies of skeletal structures. Int J Mech Sci 12(9):781–791

    Article  Google Scholar 

  44. Han F, Dan D, Cheng W (2018) Extension of dynamic stiffness method to complicated damped structures. Comput Struct 208:143–150

    Article  Google Scholar 

  45. Ricciardi G, Saitta F (2008) A continuous vibration analysis model for cables with sag and bending stiffness. Eng Struct 30(5):1459–1472

    Article  Google Scholar 

  46. Luco JE, Turmo J (2010) Linear vertical vibrations of suspension bridges: a review of continuum models and some new results. Soil Dyn Earthq Eng 30(9):769–781

    Article  Google Scholar 

  47. Fei H, Dan D, Cheng W, Jia P (2018) Analysis on the dynamic characteristic of a tensioned double-beam system with a semi theoretical semi numerical method. Compos Struct 185:584–599

    Article  Google Scholar 

  48. Fei H, Zichen D, Danhui D (2020) A novel method for dynamic analysis of complex multi-segment cable systems. Mech Syst Signal Process 142:106780

    Article  Google Scholar 

  49. Han F, Dan D, Zou Y, Lei H (2020) Experimental and theoretical study on cable-supporting system. Mech Syst Signal Process 140:106638

    Article  Google Scholar 

  50. Fei H, Dan D, Cheng W (2018) An improved Wittrick–Williams algorithm for beam-type structures. Compos Struct 204:560–566

    Article  Google Scholar 

  51. Rodman RD (1963) Algorithm 196: Muller’s method for finding roots of an abitrary function. Commun ACM 6(8):442–443

    Article  Google Scholar 

  52. Han F, Zhang Y, Zang J, Zhen N (2019) Exact dynamic analysis of shallow sagged cable system—theory and experimental verification. Int J Struct Stab Dyn 19(12):1950153

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Grant No. 51878490); the National key R&D Program of China (2017YFF0205605); Shanghai Urban Construction Design Research Institute Project ‘Bridge Safe Operation Big Data Acquisition Technology and Structure Monitoring System Research’; and the Ministry of Transport Construction Science and Technology Project ‘Medium-Small Span Bridge Structure Network Level Safety Monitoring and Evaluation’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danhui Dan.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 The Explicit Expression of the Additional Cable Force \(h_{j}^{{}}\)

According to existing studies, the additional cable force of the jth segment can be expressed as [52]

$$h_{j}^{{}} \left( t \right) = EA\varepsilon_{j} \left( t \right) = \frac{EA}{{l_{j}^{e} }}\int_{0}^{{l_{j}^{e} }} {\left[ {\frac{{\partial u_{j} }}{{\partial x_{j} }}\frac{{{\text{d}}y_{j} }}{{{\text{d}}x_{j} }}} \right]{\text{d}}x_{j} }$$
(22)

For convenience, the following derivation still ignore the effect of lateral support on static configurations of the cable, at this time, the static profile of the cable can be described by quadratic parabola [1] (valid for sag-to-span ratio \(e < {1 \mathord{\left/ {\vphantom {1 8}} \right. \kern-0pt} 8}\)). Thus, combined with Eq. (8) the additional cable force \(h_{j}^{{}}\) can be obtained by

$$\begin{aligned} h_{j} & = EA\varepsilon_{j}^{{}} \\ & = \frac{EA}{{l_{j}^{e} }}\int_{0}^{{l_{j} }} {\frac{{\partial u_{j} \left( {x_{j} ,t} \right)}}{{\partial x_{j} }}\frac{{{\text{d}}y\left( {x_{j} } \right)}}{{{\text{d}}x_{j} }}dx_{j} } \\ & = - \frac{4EAe}{{l_{0} l_{j}^{e} }}\int_{0}^{{l_{j} }} {\frac{{\partial u_{j} \left( {x_{j} ,t} \right)}}{{\partial x_{j} }}\left[ {2x_{j} + \left( {2l_{sj - 1} - l_{0} } \right)} \right]dx_{j} } \\ & = - \frac{4EAe}{{l_{0} l_{j}^{e} }}\left\{ {2\left[ {u_{j} \left( {x_{j} ,t} \right)x_{j} } \right]_{0}^{{l_{j} }} - 2\int_{0}^{{l_{j} }} {u_{j} \left( {x_{j} ,t} \right)dx_{j} } + \left( {2l_{sj - 1} - l_{0} } \right)\left[ {u_{j} \left( {x_{j} ,t} \right)} \right]_{0}^{{l_{j} }} } \right\} \\ & = \frac{8EAe}{{l_{0} l_{j}^{e} }}\left\{ {\int_{0}^{{l_{j} }} {u_{j} \left( {x_{j} ,t} \right)dx_{j} } + \left( {0.5l_{0} - l_{sj} } \right)u_{j} \left( {l_{j} ,t} \right) + \left( {l_{sj - 1} - 0.5l_{0} } \right)u_{j} \left( {0,t} \right)} \right\} \\ \end{aligned}$$
(23)

The additional cable force \(h_{j}^{{}}\) of a multi-segment cable system considering the effect of the flexural stiffness, sag, inclination, etc. can be expressed as

$$h_{j}^{{}} = \frac{8EAe}{{l_{0} l_{j}^{e} }}\left\{ {\int_{0}^{{l_{j} }} {u_{j} \left( {x_{j} ,t} \right)dx_{j} } + \left( {0.5l_{0} - l_{sj} } \right)u_{j} \left( {l_{j} ,t} \right) + \left( {l_{sj - 1} - 0.5l_{0} } \right)u_{j} \left( {0,t} \right)} \right\}$$
(24)

where e is the sag-to-span ratio defined by \(e = {{mgl_{0} \cos \theta } \mathord{\left/ {\vphantom {{mgl_{0} \cos \theta } {8H}}} \right. \kern-0pt} {8H}}\), \(\mu_{j} = {{l_{j} } \mathord{\left/ {\vphantom {{l_{j} } {l_{0} }}} \right. \kern-0pt} {l_{0} }}\) is the relative length of jth cable segment, \(l_{j}^{e}\) is the arch length of the jth cable segment

$$l_{j}^{e} = l_{0} \left[ {\mu_{sj} + 8e^{2} \mu_{sj}^{3} \left( {\frac{{1 + 4e\left( {1 - \mu_{sj}^{{}} } \right)\tan \theta }}{{\sqrt {1 + 16e^{2} \left( {1 - \mu_{sj}^{{}} } \right)^{2} } }}} \right)^{2} } \right] - l_{0} \left[ {\mu_{sj - 1} + 8e^{2} \mu_{sj - 1}^{3} \left( {\frac{{1 + 4e\left( {1 - \mu_{sj - 1}^{{}} } \right)\tan \theta }}{{\sqrt {1 + 16e^{2} \left( {1 - \mu_{sj - 1}^{{}} } \right)^{2} } }}} \right)^{2} } \right]$$
(25)

Equation (24) is the generalized expression of the additional cable force suitable for arbitrary boundary conditions. In particular, when the transverse displacement of the cable at the endpoint is constrained, then \(u_{1} \left( {x_{1} \left| {_{ = 0} } \right.,t} \right) = u_{n} \left( {x_{n} \left| {_{{ = l_{n} }} } \right.,t} \right) = 0\) and we have

$$h_{1}^{{}} = \frac{8EAe}{{l_{0} l_{j}^{e} }}\left\{ {\int_{0}^{{l_{1} }} {u_{1} \left( {x_{1} ,t} \right)dx_{1} } + (0.5l_{0} - l_{1} )u_{1} \left( {x_{1} \left| {_{{ = l_{1} }} } \right.,t} \right)} \right\}$$
(26)
$$h_{n}^{{}} = \frac{8EAe}{{l_{0} l_{j}^{e} }}\left\{ {\int_{0}^{{l_{n} }} {u_{n} \left( {x_{n} ,t} \right)dx_{n} } + \left( {l_{sn - 1} - 0.5l_{0} } \right)u_{n} \left( {x_{n} \left| {_{ = 0} } \right.,t} \right)} \right\}$$
(27)

For a two-segment cable system, it can be seen that the Eqs. (26) and (27) will degenerate into the expression given in [52].

1.2 The Explicit Expression of \({\text{B}}^{(j)}\)

Assume the particular solution \({{\hat{h}_{j} } \mathord{\left/ {\vphantom {{\hat{h}_{j} } {\tilde{\omega }^{2} }}} \right. \kern-0pt} {\tilde{\omega }^{2} }}\) in Eq. (12) has the following form

$$\frac{{\hat{h}_{j} }}{{\tilde{\omega }^{2} }} = {\mathbf{B}}^{(j)} \cdot \left\{ {\begin{array}{*{20}c} {A_{1}^{(j)} } & {A_{2}^{(j)} } & {A_{3}^{(j)} } & {A_{4}^{(j)} } \\ \end{array} } \right\}^{T}$$
(28)

then \({\mathbf{B}}^{(j)} { = }\left[ {\begin{array}{*{20}c} {b_{1}^{\left( j \right)} } & {b_{2}^{\left( j \right)} } & {b_{3}^{\left( j \right)} } & {b_{4}^{\left( j \right)} } \\ \end{array} } \right]\), (\(i = 1,2,3,4\)) can be determined as

  • When \(j = 1\)

$$\begin{aligned} b_{0}^{\left( 1 \right)} & = \frac{{\eta_{1} }}{{\left( {\tilde{\omega }^{2} - 0.5\eta_{1} } \right)}}, \\ b_{1}^{\left( 1 \right)} & = b_{0}^{\left( 1 \right)} \left( {\frac{{1 - e^{{ - p\mu_{1} }} }}{p} + \left( {0.5 - \mu_{1} } \right)e^{{ - \mu_{1} p}} } \right), \\ b_{2}^{\left( 1 \right)} & = b_{0}^{\left( 1 \right)} \left( {\frac{{1 - e^{{ - p\mu_{1} }} }}{p} + 0.5 - \mu_{1} } \right), \\ b_{3}^{\left( 1 \right)} & = b_{0}^{\left( 1 \right)} \left( {\frac{{\sin (q\mu_{1} )}}{q} + \left( {0.5 - \mu_{1} } \right)\cos \left( {q\mu_{1} } \right)} \right), \\ b_{4}^{\left( 1 \right)} & = b_{0}^{\left( 1 \right)} \left( {\frac{{1 - \cos (q\mu_{1} )}}{q} + \left( {0.5 - \mu_{1} } \right)\sin \left( {q\mu_{1} } \right)} \right) \\ \end{aligned}$$
  • When \(j = n\)

$$\begin{aligned} b_{0}^{\left( n \right)} & = \frac{{\eta_{n} }}{{\left( {\tilde{\omega }^{2} - 0.5\eta_{n} } \right)}}, \\ b_{1}^{\left( n \right)} & = b_{0}^{\left( n \right)} \left( {\frac{{1 - e^{{ - p\mu_{n} }} }}{p} + \left( {0.5 - \mu_{n} } \right)e^{{ - \mu_{n} p}} } \right), \\ b_{2}^{\left( n \right)} & = b_{0}^{\left( n \right)} \left( {\frac{{1 - e^{{ - p\mu_{n} }} }}{p} + 0.5 - \mu_{n} } \right), \\ b_{3}^{\left( n \right)} & = b_{0}^{\left( n \right)} \left( {\frac{{\sin \left( {q\mu_{n} } \right)}}{q} + \left( {0.5 - \mu_{n} } \right)\cos \left( {q\mu_{n} } \right)} \right), \\ b_{4}^{\left( n \right)} & = b_{0}^{\left( n \right)} \left( {\frac{{1 - \cos \left( {q\mu_{n} } \right)}}{q} + \left( {0.5 - \mu_{n} } \right)\sin \left( {q\mu_{n} } \right)} \right) \\ \end{aligned}$$
  • Others

$$\begin{aligned} b_{0}^{\left( j \right)} & = \frac{{\eta_{j} }}{{\tilde{\omega }^{2} }}, \\ b_{1}^{(j)} & = b_{0}^{(j)} \left( {\frac{{1 - e^{{ - p\mu_{j} }} }}{p} + \left( {\mu_{sj - 1} - 0.5} \right) + \left( {0.5 - \mu_{sj} } \right)e^{{ - p\mu_{j} }} } \right), \\ b_{2}^{(j)} & = b_{0}^{\left( j \right)} \left( {\frac{{1 - e^{{ - p\mu_{j} }} }}{p} + \left( {0.5 - \mu_{sj} } \right) + \left( {\mu_{sj - 1} - 0.5} \right)e^{{ - p\mu_{j} }} } \right), \\ b_{3}^{(j)} & = b_{0}^{\left( j \right)} \left( {\frac{{\sin \left( {q\mu_{j} } \right)}}{q} + \left( {\mu_{sj - 1} - 0.5} \right) + \left( {0.5 - \mu_{sj} } \right)\cos \left( {q\mu_{j} } \right)} \right), \\ b_{4}^{(j)} & = b_{0}^{\left( j \right)} \left( {\frac{{1 - \cos \left( {q\mu_{j} } \right)}}{q} + \left( {0.5 - \mu_{sj} } \right)\sin \left( {q\mu_{j} } \right)} \right) \\ \end{aligned}$$

where \(\begin{array}{*{20}l} {\eta_{i} } \hfill \\ \end{array} = 64\frac{{Al_{0}^{3} }}{{Il_{i}^{e} }}e^{2}\).

Appendix 2

2.1 Element Dynamic Stiffness Matrix \({\text{K}}^{\left( j \right)}\)

$${\mathbf{K}}^{\left( j \right)} = \frac{EI}{{l^{3} }}\left[ {\begin{array}{*{20}c} {k_{11}^{\left( j \right)} } & {k_{12}^{\left( j \right)} } & {k_{13}^{\left( j \right)} } & {k_{14}^{\left( j \right)} } \\ {k_{21}^{\left( j \right)} } & {k_{22}^{\left( j \right)} } & {k_{23}^{\left( j \right)} } & {k_{24}^{\left( j \right)} } \\ {k_{31}^{\left( j \right)} } & {k_{32}^{\left( j \right)} } & {k_{33}^{\left( j \right)} } & {k_{34}^{\left( j \right)} } \\ {k_{41}^{\left( j \right)} } & {k_{42}^{\left( j \right)} } & {k_{43}^{\left( j \right)} } & {k_{44}^{\left( j \right)} } \\ \end{array} } \right]$$
(29)

Then the coefficients in matrix \({\mathbf{K}}^{\left( j \right)}\) can be determined by

$$\begin{aligned} k_{11}^{\left( j \right)} & = - p\left( {p^{2} - \gamma^{2} } \right)\left( {c_{11}^{\left( j \right)} - \varepsilon_{i} c_{21}^{\left( j \right)} } \right) - q\left( {q^{2} + \gamma^{2} } \right)c_{41}^{\left( j \right)} \\ k_{12}^{\left( j \right)} & = - p\left( {p^{2} - \gamma^{2} } \right)\left( {c_{12}^{\left( j \right)} - \varepsilon_{i} c_{22}^{\left( j \right)} } \right) - q\left( {q^{2} + \gamma^{2} } \right)c_{42}^{\left( j \right)} \\ k_{13}^{\left( j \right)} & = - p\left( {p^{2} - \gamma^{2} } \right)\left( {c_{13}^{\left( j \right)} - \varepsilon_{i} c_{23}^{\left( j \right)} } \right) - q\left( {q^{2} + \gamma^{2} } \right)c_{43}^{\left( j \right)} \\ k_{14}^{\left( j \right)} & = - p\left( {p^{2} - \gamma^{2} } \right)\left( {c_{14}^{\left( j \right)} - \varepsilon_{i} c_{24}^{\left( j \right)} } \right) - q\left( {q^{2} + \gamma^{2} } \right)c_{44}^{\left( j \right)} \\ k_{21}^{\left( j \right)} & = - p^{2} \left( {c_{11}^{\left( j \right)} + \varepsilon_{j} c_{21}^{\left( j \right)} } \right) + q^{2} c_{31}^{j} , \\ k_{22}^{\left( j \right)} & = - p^{2} \left( {c_{12}^{\left( j \right)} + \varepsilon_{i} c_{22}^{\left( j \right)} } \right) + q^{2} c_{32}^{j} \\ k_{23}^{\left( j \right)} & = - p^{2} \left( {c_{13}^{\left( j \right)} + \varepsilon_{i} c_{23}^{\left( j \right)} } \right) + q^{2} c_{33}^{j} , \\ k_{24}^{\left( j \right)} & = - p^{2} \left( {c_{14}^{\left( j \right)} + \varepsilon_{i} c_{24}^{\left( j \right)} } \right) + q^{2} c_{34}^{j} \\ k_{31}^{\left( j \right)} & = \left( {p^{2} - \gamma^{2} } \right)p\varepsilon_{i} c_{11}^{\left( j \right)} + p\left( {\gamma^{2} - p^{2} } \right)c_{21}^{\left( j \right)} \\ & \quad + \left( {q^{3} + q\gamma^{2} } \right)\left( { - S_{i} c_{31}^{\left( j \right)} + C_{i} c_{41}^{\left( j \right)} } \right) \\ k_{32}^{\left( j \right)} & = \left( {p^{2} - \gamma^{2} } \right)p\varepsilon_{j} c_{12}^{\left( j \right)} + p\left( {\gamma^{2} - p^{2} } \right)c_{22}^{\left( j \right)} \\ & \quad + \left( {q^{3} + q\gamma^{2} } \right)\left( { - S_{j} c_{32}^{\left( j \right)} + C_{i} c_{42}^{\left( j \right)} } \right) \\ k_{33}^{\left( j \right)} & = \left( {p^{2} - \gamma^{2} } \right)p\varepsilon_{j} c_{13}^{\left( j \right)} + p\left( {\gamma^{2} - p^{2} } \right)c_{23}^{\left( j \right)} \\ & \quad + \left( {q^{3} + q\gamma^{2} } \right)\left( { - S_{i} c_{33}^{\left( j \right)} + C_{i} c_{43}^{\left( j \right)} } \right) \\ k_{34}^{\left( j \right)} & = \left( {p^{2} - \gamma^{2} } \right)p\varepsilon_{j} c_{14}^{\left( j \right)} + p\left( {\gamma^{2} - p^{2} } \right)c_{24}^{\left( j \right)} \\ & \quad + \left( {q^{3} + q\gamma^{2} } \right)\left( { - S_{j} c_{34}^{\left( j \right)} + C_{i} c_{44}^{\left( j \right)} } \right) \\ k_{41}^{\left( j \right)} & = p^{2} \left( {\varepsilon_{j} c_{11}^{\left( j \right)} + c_{21}^{\left( j \right)} } \right) - q^{2} \left( {C_{j} c_{31}^{\left( j \right)} + S_{i} c_{41}^{\left( j \right)} } \right), \\ k_{42}^{\left( j \right)} & = p^{2} \left( {\varepsilon_{j} c_{12}^{\left( j \right)} + c_{22}^{\left( j \right)} } \right) - q^{2} \left( {C_{j} c_{32}^{\left( j \right)} + S_{j} c_{42}^{\left( j \right)} } \right) \\ k_{43}^{\left( j \right)} & = p^{2} \left( {\varepsilon_{j} c_{13}^{\left( j \right)} + c_{23}^{\left( j \right)} } \right) - q^{2} \left( {C_{j} c_{33}^{\left( j \right)} + S_{j} c_{43}^{\left( j \right)} } \right), \\ k_{44}^{\left( j \right)} & = p^{2} \left( {\varepsilon_{j} c_{14}^{\left( j \right)} + c_{24}^{\left( j \right)} } \right) - q^{2} \left( {C_{j} c_{34}^{\left( j \right)} + S_{j} c_{44}^{\left( j \right)} } \right) \\ \end{aligned}$$

where \(\gamma^{2} = \frac{{Hl_{0}^{2} }}{EI}\), \(\left. \begin{aligned} p \hfill \\ q \hfill \\ \end{aligned} \right\} = \sqrt {\sqrt {\left( {\frac{{Hl_{0}^{2} }}{2EI}} \right)^{2} + \omega^{2} \frac{{ml_{0}^{4} }}{EI}} \pm \frac{{Hl_{0}^{2} }}{2EI}}\), \(\varepsilon_{j} = e^{{ - p\mu_{j} }}\), \(C_{j} = \cos \left( {q\mu_{j} } \right)\), \(S_{j} = \sin \left( {q\mu_{j} } \right)\) and

$$\begin{aligned} c_{11}^{\left( j \right)} & = \frac{{ - q\left( {p\left( {b_{3} + C_{j} } \right)\left( {C_{j} \varepsilon_{j} - 1} \right) - \left( {q - p\varepsilon_{j} b_{4} + b_{2} q} \right)S_{j} + \varepsilon_{j} pS_{j}^{2} } \right)}}{{y_{j} }} \\ c_{12}^{\left( j \right)} & = - \frac{{pb_{4}^{\left( j \right)} \left( {C_{j} - 1} \right) + C_{j} \left( {1 + b_{2}^{\left( j \right)} + b_{3}^{\left( j \right)} - C_{j} b_{2}^{\left( j \right)} - \left( {b_{3}^{\left( j \right)} + C_{j} } \right)\varepsilon_{j} } \right)pS_{j} - b_{4}^{\left( j \right)} \left( {\varepsilon_{j} - 1} \right)qS_{j} - \left( {b_{2}^{\left( j \right)} + \varepsilon_{j} } \right)qS_{2}^{\left( j \right)} }}{{y_{j} }} \\ c_{13}^{\left( j \right)} & = \frac{{q\left( {\left( {b_{2}^{\left( j \right)} + \varepsilon_{j} } \right)qS_{j} - p\left( {\left( {1 + b_{3}^{\left( j \right)} } \right)\left( { - 1 + C_{j} \varepsilon_{j} } \right) + b_{4}^{\left( j \right)} \varepsilon_{j} S_{j} } \right)} \right)}}{{y_{j} }} \\ c_{14}^{\left( j \right)} & = \frac{{ - b_{4}^{\left( j \right)} \left( {C_{j} - 1} \right)\varepsilon_{j} p - \left( {1 + b_{2}^{\left( j \right)} + b_{3}^{\left( j \right)} } \right)q + b_{2}^{\left( j \right)} C_{j} q + \left( {b_{3}^{\left( j \right)} + C_{j} } \right)\varepsilon_{j} q + \left( {1 + b_{3}^{\left( j \right)} } \right)\varepsilon_{j} pS_{j} }}{{y_{j} }} \\ c_{21}^{\left( j \right)} & = \frac{{q\left( {\left( {b_{3}^{\left( j \right)} + C_{j} } \right)\left( {C_{j} - \varepsilon_{j} } \right)p + \left( {b_{4}^{\left( j \right)} p + \left( {b_{1}^{\left( j \right)} + \varepsilon_{j} } \right)q} \right)S_{j} + pS_{j}^{2} } \right)}}{{y_{j} }} \\ c_{22}^{\left( j \right)} & = - \frac{{ - b_{4}^{\left( j \right)} \left( {C_{j} - 1} \right)\varepsilon_{j} p + C_{j} \left( {b_{1}^{\left( j \right)} - C_{j} - b_{1}^{\left( j \right)} C_{j} + b_{3}^{\left( j \right)} \left( {\varepsilon_{j} - 1} \right) + \varepsilon_{j} } \right)q + \left( {1 + b_{3}^{\left( j \right)} } \right)\varepsilon_{j} pS_{j} + b_{4}^{\left( j \right)} \left( {\varepsilon_{j} - 1} \right)qS_{j} - \left( {1 + b_{1}^{\left( j \right)} } \right)qS_{j}^{2} }}{{y_{j} }} \\ c_{23}^{\left( j \right)} & = - \frac{{\left( {1 + b_{3}^{\left( j \right)} } \right)\left( {C_{j} - \varepsilon_{j} } \right)pq + q\left( {b_{4}^{\left( j \right)} p + q + b_{4}^{\left( j \right)} q} \right)S_{j} }}{{y_{j} }} \\ c_{24}^{\left( j \right)} & = \frac{{b_{4}^{\left( j \right)} \left( {p - C_{j} p} \right) + \left( {b_{1}^{\left( j \right)} - C_{j} - b_{1}^{\left( j \right)} C_{j} + b_{3}^{\left( j \right)} \left( {\varepsilon_{j} - 1} \right) + \varepsilon_{j} } \right)q + \left( {1 + b_{3}^{\left( j \right)} } \right)pS_{j} }}{{y_{j} }} \\ c_{31}^{\left( j \right)} & = - \frac{{p\left( {b_{4}^{\left( j \right)} \left( {\varepsilon_{j}^{2} - 1} \right)p + \left( { - \left( {2 + b_{2}^{\left( j \right)} } \right)\varepsilon_{j} + b_{1}^{\left( j \right)} \left( {C_{j} \varepsilon_{j} - 1} \right) + C_{j} \left( {1 + b_{2}^{\left( j \right)} + \varepsilon_{j}^{2} } \right)} \right)q + \left( {\varepsilon_{j}^{2} - 1} \right)pS_{j} } \right)}}{{y_{j} }} \\ c_{32}^{\left( j \right)} & = \frac{{b_{4}^{\left( j \right)} \left( {\varepsilon_{j} - 1} \right)^{2} p + C_{j} \left( {\varepsilon_{j} - 1} \right)\left( {1 + b_{1}^{\left( j \right)} + b_{2}^{\left( j \right)} + \varepsilon_{j} } \right)q + \left( {1 + b_{1}^{\left( j \right)} + \varepsilon_{j} \left( {b_{2}^{\left( j \right)} + \varepsilon_{j} } \right)} \right)pS_{j} }}{{y_{j} }}, \\ c_{33}^{\left( j \right)} & = \frac{{p\left( {b_{4}^{\left( j \right)} \left( {\varepsilon_{j}^{2} - 1} \right)p - \left( {1 + b_{1}^{\left( j \right)} - C_{i} b_{2}^{\left( j \right)} + \left( {b_{2}^{\left( j \right)} - \left( {2 + b_{1}^{\left( j \right)} } \right)C_{j} } \right)\varepsilon_{j} + \varepsilon_{j}^{2} } \right)q} \right)}}{{y_{j} }}, \\ c_{34}^{\left( j \right)} & = \frac{{b_{4}^{\left( j \right)} \left( {\varepsilon_{j} - 1} \right)^{2} p - \left( {\varepsilon_{j} - 1} \right)\left( {1 + b_{1}^{\left( j \right)} + b_{2}^{\left( j \right)} + \varepsilon_{j} } \right)q - \left( {b_{2}^{\left( j \right)} + \left( {2 + b_{1}^{\left( j \right)} } \right)\varepsilon_{j} } \right)pS_{j} }}{{y_{j} }}, \\ c_{41}^{\left( j \right)} & = \frac{{p\left( { - \left( {b_{3}^{\left( j \right)} + C_{j} } \right)\left( {\varepsilon_{j}^{2} - 1} \right)p + \left( {1 + b_{2}^{\left( j \right)} + b_{1}^{\left( j \right)} \varepsilon_{j} + \varepsilon_{j}^{2} } \right)qS_{j} } \right)}}{{ - y_{j} }}, \\ c_{42}^{\left( j \right)} & = \frac{{ - \left( {b_{1}^{\left( j \right)} \left( {C_{j} - 1} \right) + C_{j} + b_{3}^{\left( j \right)} \left( {\varepsilon_{j} - 1} \right)^{2} - \left( {2 + b_{2}^{\left( j \right)} } \right)\varepsilon_{j} + C_{j} \varepsilon_{j} \left( {b_{2}^{\left( j \right)} + \varepsilon_{j} } \right)} \right)p + \left( {\varepsilon_{j} - 1} \right)\left( {1 + b_{1}^{\left( j \right)} + b_{2}^{\left( j \right)} + \varepsilon_{j} } \right)qS_{j} }}{{y_{j} }}, \\ c_{43}^{\left( j \right)} & = \frac{{p\left( {\left( {1 + b_{3}^{\left( j \right)} } \right)\left( { - 1 + \varepsilon_{j}^{2} } \right)p - \left( {b_{2}^{\left( j \right)} + \left( {2 + b_{1}^{\left( j \right)} } \right)\varepsilon_{j} } \right)qS_{j} } \right)}}{{ - y_{j} }}, \\ c_{44}^{\left( j \right)} & = \frac{{\left( { - 1 + b_{2}^{\left( j \right)} \left( { - 1 + C_{j} } \right) - b_{3}^{\left( j \right)} \left( { - 1 + \varepsilon_{j} } \right)^{2} + \left( {b_{1}^{\left( j \right)} \left( { - 1 + C_{j} } \right) + 2C_{j} - \varepsilon_{j} } \right)\varepsilon_{j} } \right)p}}{{y_{j} }} \\ \end{aligned}$$
$$\begin{aligned} y_{j} & = \left( { - b_{3}^{\left( j \right)} \left( {1 + C_{j} } \right)\left( { - 1 + \varepsilon_{j} } \right)^{2} + b_{1}^{\left( j \right)} \left( { - 1 + C_{j} } \right)\left( { - 1 + C_{j} \varepsilon_{j} } \right) + \left( {C_{j} - \varepsilon_{j} } \right)\left( { - 2 + b_{2}^{\left( j \right)} \left( { - 1 + C_{j} } \right) + 2C_{j} \varepsilon_{j} } \right)} \right)pq - \left( { - 1 + \varepsilon_{j} } \right) \\ & \quad \left( {\left( {1 + b_{3}^{\left( j \right)} } \right)\left( {1 + \varepsilon_{j} } \right)p^{2} - \left( {1 + b_{1}^{\left( j \right)} + b_{2}^{\left( j \right)} + \varepsilon_{j} } \right)q^{2} } \right)S_{j} + \left( {b_{2}^{\left( j \right)} + \left( {2 + b_{1}^{\left( j \right)} } \right)\varepsilon_{j} } \right)pqS_{j}^{2} + b_{4}^{\left( j \right)} p\left( {\left( { - 1 + C_{j} } \right)\left( { - 1 + \varepsilon_{j}^{2} } \right)p - \left( { - 1 + \varepsilon_{j} } \right)^{2} qS_{j} } \right) \\ \end{aligned}$$

The Global Dynamic Stiffness Matrix \({\mathbf{K}}^{\left( 0 \right)}\) for an n-Segment Cable System with the Clamped Boundary Condition

$$K^{\left( 0 \right)} = \left[ {\begin{array}{*{20}c} {k_{33}^{\left( 1 \right)} + k_{11}^{\left( 2 \right)} + k_{eq,1} } & {k_{34}^{\left( 1 \right)} + k_{12}^{\left( 2 \right)} } & {k_{13}^{\left( 2 \right)} } & {k_{14}^{\left( 2 \right)} } & 0 & 0 & \cdots & 0 & \cdots & 0 \\ {k_{43}^{\left( 1 \right)} + k_{21}^{\left( 2 \right)} } & {k_{44}^{\left( 1 \right)} + k_{22}^{\left( 2 \right)} } & {k_{23}^{\left( 2 \right)} } & {k_{24}^{\left( 2 \right)} } & 0 & 0 & \cdots & \cdots & \cdots & 0 \\ {k_{31}^{\left( 2 \right)} } & {k_{32}^{\left( 2 \right)} } & {k_{33}^{\left( 2 \right)} + k_{11}^{\left( 3 \right)} + k_{eq,2} } & {k_{34}^{\left( 2 \right)} + k_{12}^{\left( 3 \right)} } & {k_{13}^{\left( 3 \right)} } & {k_{14}^{\left( 3 \right)} } & 0 & \vdots & \vdots & \vdots \\ {k_{41}^{\left( 2 \right)} } & {k_{42}^{\left( 2 \right)} } & {k_{43}^{\left( 2 \right)} + k_{21}^{\left( 3 \right)} } & {k_{44}^{\left( 2 \right)} + k_{22}^{\left( 3 \right)} } & {k_{23}^{\left( 3 \right)} } & {k_{24}^{\left( 3 \right)} } & 0 & 0 & \cdots & 0 \\ 0 & 0 & {k_{31}^{\left( 3 \right)} } & {k_{32}^{\left( 3 \right)} } & \ddots & {} & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & {k_{41}^{\left( 3 \right)} } & {k_{42}^{\left( 3 \right)} } & {} & \ddots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \cdots & 0 & {k_{33}^{{\left( {n - 2} \right)}} + k_{11}^{{\left( {n - 1} \right)}} + k_{eq,n - 2} } & {k_{34}^{{\left( {n - 2} \right)}} + k_{12}^{{\left( {n - 1} \right)}} } & {k_{13}^{{\left( {n - 1} \right)}} } & {k_{14}^{{\left( {n - 1} \right)}} } \\ 0 & 0 & \cdots & 0 & \cdots & 0 & {k_{43}^{{\left( {n - 2} \right)}} + k_{21}^{{\left( {n - 1} \right)}} } & {k_{44}^{{\left( {n - 2} \right)}} + k_{22}^{{\left( {n - 1} \right)}} } & {k_{23}^{{\left( {n - 1} \right)}} } & {k_{24}^{{\left( {n - 1} \right)}} } \\ \vdots & \vdots & \vdots & \vdots & \cdots & 0 & {k_{31}^{{\left( {n - 1} \right)}} } & {k_{32}^{{\left( {n - 1} \right)}} } & {k_{33}^{{\left( {n - 1} \right)}} + k_{11}^{\left( n \right)} + k_{eq,n - 1} } & {k_{34}^{{\left( {n - 1} \right)}} + k_{12}^{\left( n \right)} } \\ 0 & 0 & \cdots & 0 & \cdots & 0 & {k_{41}^{{\left( {n - 1} \right)}} } & {k_{42}^{{\left( {n - 1} \right)}} } & {k_{43}^{{\left( {n - 1} \right)}} + k_{21}^{\left( n \right)} } & {k_{44}^{{\left( {n - 1} \right)}} + k_{22}^{\left( n \right)} } \\ \end{array} } \right]$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, H., Deng, Z. & Dan, D. Vertical Vibrations of Suspension Bridges: A Review and a New Method. Arch Computat Methods Eng 28, 1591–1610 (2021). https://doi.org/10.1007/s11831-020-09430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09430-4

Navigation