Skip to main content
Log in

A Paradifferential Approach for Well-Posedness of the Muskat Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

A Publisher Correction to this article was published on 17 March 2020

This article has been updated

Abstract

We study the Muskat problem for one fluid or two fluids, with or without viscosity jump, with or without rigid boundaries, and in arbitrary space dimension d of the interface. The Muskat problem is scaling invariant in the Sobolev space \(H^{s_c}({\mathbb {R}}^d)\) where \(s_c=1+\frac{d}{2}\). Employing a paradifferential approach, we prove local well-posedness for large data in any subcritical Sobolev spaces \(H^s({\mathbb {R}}^d)\), \(s>s_c\). Moreover, the rigid boundaries are only required to be Lipschitz and can have arbitrarily large variation. The Rayleigh–Taylor stability condition is assumed for the case of two fluids with viscosity jump but is proved to be automatically satisfied for the case of one fluid. The starting point of this work is a reformulation solely in terms of the Drichlet–Neumann operator. The key elements of proofs are new paralinearization and contraction results for the Drichlet–Neumann operator in rough domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 17 March 2020

    Due to typesetting mistakes, several errors have been introduced.

Notes

  1. A priori, Proposition 3.12 would only give a bound in \(X^{s-1}([z_0,0])\) for some \(z_0>-1\). However, one can first apply this with \(\varrho _j\) replaced by \(\varrho _{j,*}\) which is equal to \(\varrho _j\) for \(-1\leqq z\leqq 0\) and smooth for \(-2\leqq z\leqq 0\) to obtain a bound on \([-1,0]\).

References

  1. Ai, A.: Low regularity solutions for gravity water waves, preprint, arXiv:1712.07821, 2017

  2. Alazard, T., Burq, N., Zuily, C.: On the water waves equations with surface tension. Duke Math. J. 158(3), 413–499, 2011

    MathSciNet  MATH  Google Scholar 

  3. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  4. Alazard, T., Burq, N., Zuily, C.: Strichartz Estimates and the Cauchy Problem for the Gravity Water Waves Equations. Memoirs of the AMS, Vol. 256, 2018

  5. Alazard, T., Lazar, O.: Paralinearization of the Muskat equation and application to the Cauchy problem, preprint arXiv:1907.02138, 2019

  6. Alazard, T., Meunier, N., Smets, D.: Lyapounov functions, identities and the Cauchy problem for the Hele-Shaw equation, preprint arXiv:1907.03691, 2019

  7. Alazard, T., Métivier, G.: Paralinearization of the Dirichlet to Neumann operator, and regularity of diamond waves. Commun. Partial Differ. Equ. 34(10–12), 1632–1704, 2009

    MATH  Google Scholar 

  8. Ambrose, D.M.: Well-posedness of two-phase Hele-Shaw flow without surface tension. Eur. J. Appl. Math. 15(5), 597–607, 2004

    MathSciNet  MATH  Google Scholar 

  9. Ambrose, D.M.: Well-posedness of two-phase Darcy flow in 3D. Q. Appl. Math. 65(1), 189–203, 2007

    MathSciNet  MATH  Google Scholar 

  10. Bahouri, H., Chemin, J-Y, Danchin, R.: Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011

  11. Berselli, L.C., Córdoba, D., Granero-Belinchón, R.: Local solvability and turning for the inhomogeneous Muskat problem. Interfaces Free Bound. 16(2), 175–213, 2014

    MathSciNet  MATH  Google Scholar 

  12. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4)14(2), 209–246, 1981

    MathSciNet  MATH  Google Scholar 

  13. Cameron, S.: Global well-posedness for the two-dimensional Muskat problem with slope less than 1. Anal. PDE12(4), 997–1022, 2019

    MathSciNet  MATH  Google Scholar 

  14. Castro, A., Córdoba, D., Fefferman, C., Gancedo, F.: Breakdown of smoothness for the Muskat problem. Arch. Ration. Mech. Anal. 208(3), 805–909, 2013

    MathSciNet  MATH  Google Scholar 

  15. Castro, A., Córdoba, D., Fefferman, C.L., Gancedo, F., López-Fernández, María: Rayleigh Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. 175(2), 909–948, 2012

    MathSciNet  MATH  Google Scholar 

  16. Chang-Lara, H.A., Guillen, N., Schwab, R.W.: Some free boundary problems recast as nonlocal parabolic equations, preprint, arXiv:1807.02714, 2018

  17. Chen, X.: The Hele-Shaw problem and area-preserving curve-shortening motions. Arch. Ration. Mech. Anal. 123(2), 117–151, 1993

    MathSciNet  MATH  Google Scholar 

  18. Cheng, C.H., Granero-Belinchón, R., Shkoller, S.: Well-posedness of the Muskat problem with \(H^2\) initial data. Adv. Math. 286, 32–104, 2016

    MathSciNet  MATH  Google Scholar 

  19. Constantin, P., Córdoba, D., Gancedo, F., Rodriguez-Piazza, L., Strain, R.M.: On the Muskat problem: global in time results in 2D and 3D. Am. J. Math. 138(6), 1455–1494, 2016

    MathSciNet  MATH  Google Scholar 

  20. Constantin, P., Córdoba, D., Gancedo, F., Strain, R.M.: On the global existence for the Muskat problem. J. Eur. Math. Soc. 15, 201–227, 2013

    MathSciNet  MATH  Google Scholar 

  21. Constantin, P., Gancedo, F., Shvydkoy, R., Vicol, V.: Global regularity for 2D Muskat equations with finite slope. Ann. Inst. H. Poincaré Anal. Non Linéaire34(4), 1041–1074, 2017

    ADS  MathSciNet  MATH  Google Scholar 

  22. Constantin, P., Pugh, M.: Global solutions for small data to the Hele-Shaw problem. Nonlinearity6(3), 393–415, 1993

    ADS  MathSciNet  MATH  Google Scholar 

  23. Córdoba, A., Córdoba, D., Gancedo, F.: Interface evolution: the Hele-Shaw and Muskat problems. Ann. Math. 173(1), 477–542, 2011

    MathSciNet  MATH  Google Scholar 

  24. Córdoba, A., Córdoba, D., Gancedo, F.: Porous media: the Muskat problem in three dimensions. Anal. PDE6(2), 447–497, 2013

    MathSciNet  MATH  Google Scholar 

  25. Córdoba, D., Gancedo, F.: Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Commun. Math. Phys. 273(2), 445–471, 2007

    ADS  MathSciNet  MATH  Google Scholar 

  26. Córdoba, D., Gancedo, F.: A maximum principle for the Muskat problem for fluids with different densities. Commun. Math. Phys. 286(2), 681–696, 2009

    ADS  MathSciNet  MATH  Google Scholar 

  27. Córdoba, D., Granero-Belinchón, R., Orive, R.: The confined Muskat problem: differences with the deep water regime. Commun. Math. Sci. 12(3), 423–455, 2014

    MathSciNet  MATH  Google Scholar 

  28. Córdoba, D., Lazar, O.: Global well-posedness for the 2d stable Muskat problem in H3/2, preprint, arXiv:1803.07528, 2018

  29. Deng, F., Lei, Z., Lin, F.: On the two-dimensional Muskat problem with monotone large initial data. Commun. Pure Appl. Math. 70(6), 1115–1145, 2017

    MathSciNet  MATH  Google Scholar 

  30. de Poyferré, T.: A priori estimates for water waves with emerging bottom. Arch. Ration. Mech. Anal. 232(2), 763–812, 2019

    MathSciNet  MATH  Google Scholar 

  31. de Poyferré, T., Nguyen, H.Q.: A paradifferential reduction for the gravity–capillary waves system at low regularity and applications. Bull. Soc. Math. Fr. 145(4), 643–710, 2017

    MathSciNet  MATH  Google Scholar 

  32. de Poyferre, T., Nguyen, H.Q.: Strichartz estimates and local existence for the gravity–capillary water waves with non-Lipschitz initial velocity. J. Differ. Equ. 261(1), 396–438, 2016

    ADS  MATH  Google Scholar 

  33. Escher, J., Simonett, G.: Classical solutions for Hele-Shaw models with surface tension. Adv. Differ. Equ. 2, 619–642, 1997

    MathSciNet  MATH  Google Scholar 

  34. Escher, J., Matioc, B.V.: On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results. Z. Anal. Anwend. 30(2), 193–218, 2011

    MathSciNet  MATH  Google Scholar 

  35. Flynn, P., Nguyen, H.Q.: The vanishing surface tension limit of the Muskat problem, preprint arXiv:2001.10473, 2020

  36. Gancedo, F.: A survey for the Muskat problem and a new estimate. SeMA74(1), 21–35, 2017

    MathSciNet  MATH  Google Scholar 

  37. Gómez-Serrano, J., Granero-Belinchón, R.: On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof. Nonlinearity27(6), 1471–1498, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  38. Granero-Belinchón, R.: Global existence for the confined Muskat problem. SIAM J. Math. Anal. 46(2), 1651–1680, 2014

    MathSciNet  MATH  Google Scholar 

  39. Gancedo, F., García-Juárez, E., Patel, N., Strain, R.M.: On the Muskat problem with viscosity jump: global in time results. Adv. Math. 345, 552–597, 2019

    MathSciNet  MATH  Google Scholar 

  40. Granero-Belinchón, R., Lazar, O.: Growth in the Muskat problem, preprint, arXiv:1904.00294, 2019

  41. Granero-Belinchón, R., Shkoller, S.: Well-posedness and decay to equilibrium for the Muskat problem with discontinuous permeability. Trans. Amer. Math. Soc. 372(4), 2255–2286, 2019

    MathSciNet  MATH  Google Scholar 

  42. Guo, Y., Hallstrom, C., Spirn, D.: Dynamics near unstable, interfacial fluids. Commun. Math. Phys. 270(3), 635–689, 2007

    ADS  MathSciNet  MATH  Google Scholar 

  43. Hele-Shaw, H.S.: The flow of water. Nature58, 34–36, 1898

    ADS  Google Scholar 

  44. Hele-Shaw, H.S.: On the motion of a viscous fluid between two parallel plates. Trans. R. Inst. Nav. Arch. 40, 218, 1898

    Google Scholar 

  45. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations, volume 26 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 1997

  46. Hunter, J.K., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346, 483–552, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  47. Lannes, D.: Well-posedness of the water waves equations. J. Am. Math. Soc. 18(3), 605–654, 2005

    MathSciNet  MATH  Google Scholar 

  48. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris 1968

    MATH  Google Scholar 

  49. Leoni, G., Tice, I.: Traces for homogeneous Sobolev spaces in infinite strip-like domains. J. Funct. Anal. 277(7), 2288–2380, 2019

    MathSciNet  MATH  Google Scholar 

  50. Matioc, B.-V.: The muskat problem in 2D: equivalence of formulations, well-posedness, and regularity results. Anal. PDE12(2), 281–332, 2018

    MATH  Google Scholar 

  51. Matioc, B.-V.: Viscous displacement in porous media: the Muskat problem in 2D. Trans. Am. Math. Soc. 370(10), 7511–7556, 2018

    ADS  MathSciNet  MATH  Google Scholar 

  52. Métivier, G.: Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, volume 5 of Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series. Edizioni della Normale, Pisa, 2008

  53. Muskat, M.: Two fluid systems in porous media. The encroachment of water into an oil sand. Physics5, 250–264, 1934

    ADS  MATH  Google Scholar 

  54. Nguyen, H.Q.: A sharp Cauchy theory for 2D gravity–capillary water waves. Ann. Inst. H. Poincaré Anal. Non Linéaire34(7), 1793–1836, 2017

    ADS  MathSciNet  MATH  Google Scholar 

  55. Nguyen, H.Q.: On well-posedness of the Muskat problem with surface tension. arXiv:1907.11552 [math.AP], 2019

  56. Pernas-Castaño, T.: Local-existence for the inhomogeneous Muskat problem. Nonlinearity30(5), 2063, 2017

    ADS  MathSciNet  MATH  Google Scholar 

  57. Saffman, P.G., Taylor, G.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A245, 312–329, 1958. (2 plates)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Safonov, M.V.: Boundary estimates for positive solutions to second order elliptic equations. arXiv:0810.0522, 2008

  59. Siegel, M., Caflisch, R., Howison, S.: Global existence, singular solutions, and Ill-posedness for the Muskat problem. Commun. Pure Appl. Math. 57, 1374–1411, 2004

    MathSciNet  MATH  Google Scholar 

  60. Strichartz, R.S.: “Graph paper” trace characterizations of functions of finite energy. J. Anal. Math. 128, 239–260, 2016

    MathSciNet  MATH  Google Scholar 

  61. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130, 39–72, 1997

    ADS  MathSciNet  MATH  Google Scholar 

  62. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495, 1999

    MathSciNet  MATH  Google Scholar 

  63. Yi, F.: Local classical solution of Muskat free boundary problem. J. Partial Differ. Equ. 9, 84–96, 1996

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of HQN was partially supported by NSF Grant DMS-1907776. BP was partially supported by NSF Grant DMS-1700282. We would like to thank the reviewer for his/her positive and insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huy Q. Nguyen.

Additional information

Communicated by P. Constantin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Modificiations have been made in section 1.3, first paragraph, last line. In Appendix A, last equation, last two lines and in the heading 4.2.2. Full information regarding the corrections made can be found in the correction for this article.

Appendices

Appendix A. Traces for Homogeneous Sobolev Spaces

1.1 A.1. Infinite Strip-Like Domains

Let \(\eta _1\) and \(\eta _2\) be two Lipchitz functions on \({\mathbb {R}}^d\), \(\eta _j\in \dot{W}^{1, \infty }({\mathbb {R}}^d)\), such that \(\eta _1>\eta _2\). Set

$$\begin{aligned} L=\Vert \nabla \eta _1\Vert _{L^\infty }+\Vert \nabla \eta _2\Vert _{L^\infty }, \quad \Theta (x)=\frac{\eta _1(x)-\eta _2(x)}{2L}. \end{aligned}$$

Consider the infinite strip-like domain

$$\begin{aligned} U=\{(x, y)\in {\mathbb {R}}^{d+1}: \eta _2(x)<y<\eta _1(x)\}. \end{aligned}$$
(A.1)

We record in this Appendix the trace theory in [49] (see also [60]) for \(\dot{H}^1(U)\) where

$$\begin{aligned} \dot{H}^1(U)=\{u\in L^2_{loc}(U): \nabla u\in L^2(U)\}/~{\mathbb {R}}. \end{aligned}$$

Theorem A.1

([49, Theorem 5.1]) There exists a unique linear operator

$$\begin{aligned} \text {Tr}: \dot{H}^1(U)\rightarrow L^2_{loc}({\mathbb {R}}^d) \end{aligned}$$

such that the following hold:

  1. (1)

    \(\text {Tr}(u)=u\vert _{\partial U}\) for all \(u\in \dot{H}^1(U)\cap C({{\overline{U}}})\).

  2. (2)

    There exists a positive constant \(C=C(d)\) such that for all \(u\in \dot{H}^1(U)\), the functions \(g_j=\text {Tr}(u)(\cdot , \eta _j(\cdot ))\) are in \(\widetilde{H}^\frac{1}{2}_\Theta ({\mathbb {R}}^d)\) and satisfy

    $$\begin{aligned}&\Vert g_j\Vert _{ \widetilde{H}^\frac{1}{2}_\Theta ({\mathbb {R}}^d)}\leqq C(1+L) \Vert u\Vert _{\dot{H}^1(U)}, \end{aligned}$$
    (A.2)
    $$\begin{aligned}&\int _{{\mathbb {R}}^d}\frac{|g_1(x)-g_2(x)|^2}{\eta _1(x)-\eta _2(x)}\,\hbox {d}x\leqq C\int _U |\partial _y u(x, y)|^2\,\hbox {d}x\,\hbox {d}y. \end{aligned}$$
    (A.3)

Recall that the space \(\widetilde{H}^\frac{1}{2}_\Theta ({\mathbb {R}}^d)\) is defined by (3.5).

Theorem A.2

([49, Theorem 5.4]) Suppose that \(g_1\) and \(g_2\) are in \(\widetilde{H}^\frac{1}{2}_{a(\eta _1-\eta _2)}({\mathbb {R}}^d)\) for some \(a\in (0, 1)\) such that

$$\begin{aligned} \int _{{\mathbb {R}}^d}\frac{|g_1(x)-g_2(x)|^2}{\eta _1(x)-\eta _2(x)}\,\hbox {d}x<\infty . \end{aligned}$$

Then there exists \(u\in \dot{H}^1(U)\) such that \(\text {Tr}(u)(\cdot , \eta _j(\cdot ))=g_j\) and

$$\begin{aligned} \Vert u\Vert ^2_{\dot{H}^1(U)}\leqq & {} C(1+L)^2\int _{{\mathbb {R}}^d}\frac{|g_1(x)-g_2(x)|^2}{\eta _1(x)-\eta _2(x)}\,\hbox {d}x\nonumber \\&+\,C(1+L)^2\left( \Vert g_1\Vert ^2_{\widetilde{H}^\frac{1}{2}_{a(\eta _1-\eta _2)}({\mathbb {R}}^d)}+\Vert g_2\Vert ^2_{\widetilde{H}^\frac{1}{2}_{a(\eta _1-\eta _2)}({\mathbb {R}}^d)}\right) \end{aligned}$$
(A.4)

where \(C=C(d)\).

1.2 A.2. Lipschitz Half Spaces

For a Lipschitz function \(\eta \) on \({\mathbb {R}}^d\) we consider the associated half-space

$$\begin{aligned} U=\{(x, y)\in {\mathbb {R}}^{n+1}: y<\eta (x)\}. \end{aligned}$$

Theorem A.3

There exists a unique linear operator

$$\begin{aligned} \text {Tr}: \dot{H}^1(U)\rightarrow L^2_{loc}({\mathbb {R}}^d) \end{aligned}$$

such that the following hold:

  1. (1)

    \(\text {Tr}(u)=u\vert _{\partial U}\) for all \(u\in \dot{H}^1(U)\cap C({{\overline{U}}})\).

  2. (2)

    There exists a positive constant \(C=C(d)\) such that for all \(u\in \dot{H}^1(U)\), the function \(g=\text {Tr}(u)(\cdot , \eta (\cdot ))\) is in \(\widetilde{H}^\frac{1}{2}_\infty ({\mathbb {R}}^d)\) and satisfies

    $$\begin{aligned} \Vert g\Vert _{ \widetilde{H}^\frac{1}{2}_\infty ({\mathbb {R}}^d)}\leqq C(1+\Vert \nabla \eta \Vert _{L^\infty ({\mathbb {R}}^d)}) \Vert u\Vert _{\dot{H}^1(U)}. \end{aligned}$$
    (A.5)

Theorem A.4

For each \(g\in \widetilde{H}^\frac{1}{2}_\infty ({\mathbb {R}}^d)\), there exists \(u\in \dot{H}^1(U)\) such that \(\text {Tr}(u)(\cdot , \eta (\cdot ))=g\) and

$$\begin{aligned} \Vert u\Vert _{\dot{H}^1(U)}\leqq C(1+\Vert \nabla \eta \Vert _{L^\infty ({\mathbb {R}}^d)})\Vert g_1\Vert _{\widetilde{H}^\frac{1}{2}_\infty ({\mathbb {R}}^d)} \end{aligned}$$
(A.6)

where \(C=C(d)\).

1.3 A.3. Trace of Normalized Normal Derivative

We consider the infinite strip-like domain

$$\begin{aligned} U_h=\{(x, y)\in {\mathbb {R}}^d\times {\mathbb {R}}:~\eta (x)-h<y<\eta (x)\} \end{aligned}$$

of width h underneath the graph of \(\eta \)

$$\begin{aligned} \Sigma =\{ (x, \eta (x)):~x\in {\mathbb {R}}^d\}. \end{aligned}$$

Note that \(n=\frac{1}{\sqrt{1+|\nabla \eta |}}(-\nabla \eta , 1)\) is the upward pointing unit normal to \(\Sigma \).

Our goal is to show that for any function u in the homogeneous maximal domain of the Laplace operator \(\Delta \)

$$\begin{aligned} E(U_h)=\{u\in \dot{H}^1(U_h):~\Delta _{x, y} u\in L^2(U_h)\}, \end{aligned}$$

the trace

$$\begin{aligned} \sqrt{1+|\nabla \eta |^2}\frac{\partial u}{\partial n}\vert _\Sigma =\partial _y u(x, \eta (x))-(\nabla _xu)(x ,\eta (x))\cdot \nabla \eta (x) \end{aligned}$$

makes sense in \(H^{-\frac{1}{2}}({\mathbb {R}}^d)\).

Theorem A.5

Assume that \(\eta \in \dot{W}^{1, \infty }({\mathbb {R}}^d)\). There exists a unique linear operator \({\mathcal {N}}: E(U_h)\rightarrow H^{-\frac{1}{2}}({\mathbb {R}}^d)\) such that the following hold:

  1. (1)

    \({\mathcal {N}}(u)=\sqrt{1+|\nabla \eta |^2}\frac{\partial u}{\partial n}\vert _\Sigma \) if \(u\in \dot{H}^1(U_h)\cap C^1({{\overline{U}}}_h)\).

  2. (2)

    There exists an absolute constant \(C>0\) such that

    $$\begin{aligned} \Vert {\mathcal {N}}(u)\Vert _{H^{-\frac{1}{2}}({\mathbb {R}}^d)}\leqq & {} Ch^{-\frac{1}{2}}(1+\Vert \nabla \eta \Vert _{L^\infty })\Vert \nabla _{x, y}u\Vert _{L^2(U_h)}\\&\quad +\,Ch^{-\frac{1}{2}}\Vert \Delta _{x, y}u\Vert _{L^2(U_h)} \end{aligned}$$

    for all \(u\in E(U_h)\).

Proof

Set \(S={\mathbb {R}}^d\times (-1, 0)\) and introduce \(\theta (x, z)=\eta (x)+zh\) for \((x, z)\in S\). It is clear that \((x, z)\mapsto (x, \theta (x, z))\) is a diffeomorphism from S onto \(U_h\). If \(f:U_h\rightarrow {\mathbb {R}}\) we denote \(\widetilde{f}(x, z)=f(x, \theta (x, z))\). It follows that

$$\begin{aligned} \begin{aligned}&(\partial _yf)(x, \theta (x, z))=\frac{1}{h}\partial _z\widetilde{f}(x, z),\\&(\nabla _xf)(x, \theta (x, z))=\left( \nabla _x-\frac{\nabla \eta }{h}\partial _z\right) \widetilde{f}(x, z):=\Lambda \widetilde{f}. \end{aligned} \end{aligned}$$

For \(u\in E(U)\) we have that \(f=\Delta u\) satisfies

$$\begin{aligned} \widetilde{f} ={{\,\mathrm{div}\,}}_{x,z}(A \nabla _{x,z}\widetilde{u}) \end{aligned}$$
(A.7)

with

$$\begin{aligned} A= \begin{bmatrix} Id &{} \quad -\frac{\nabla \eta }{h}\\ -\frac{(\nabla \eta )^T}{h} &{}\quad \frac{1+|\nabla \eta |^2}{h^2}. \end{bmatrix} \end{aligned}$$
(A.8)

Equivalently, we have

$$\begin{aligned} {{\,\mathrm{div}\,}}_x\Lambda \widetilde{u}+\partial _z\left( -\frac{\nabla \eta }{h}\nabla _x\widetilde{u}+\frac{1+|\nabla \eta |^2}{h^2}\partial _z\widetilde{u}\right) =\widetilde{f}. \end{aligned}$$
(A.9)

Let us consider the quantity

$$\begin{aligned} \begin{aligned}&(\partial _y u)(x, \theta (x, z)) -(\nabla _xu)(x, \theta (x, z))\cdot \nabla \eta (x)\\&\quad =\frac{1}{h}\partial _z\widetilde{u}(x, z)-\nabla \eta (x, z)\cdot \left( \nabla _x-\frac{\nabla \eta }{h}\partial _z\right) \widetilde{u}(x, z)\\&\quad =-\frac{\nabla \eta (x)}{h}\cdot \nabla _x\widetilde{u}(x, z)+\frac{1+|\nabla \eta (x, z)|^2}{h^2}\partial _z\widetilde{u}(x, z)\\&\quad := \Xi (x, z). \end{aligned} \end{aligned}$$

Using the first expression we deduce easily that

$$\begin{aligned} \Vert \Xi \Vert _{L^2((-1, 0); L^2({\mathbb {R}}^d))}\leqq h^{-\frac{1}{2}}(1+\Vert \nabla \eta \Vert _{L^\infty })\Vert \nabla _{x, y}u\Vert _{L^2(U_h)}. \end{aligned}$$
(A.10)

Moreover, (A.9) implies

$$\begin{aligned} \partial _z \Xi =\widetilde{f}-{{\,\mathrm{div}\,}}_x\Lambda \widetilde{u}. \end{aligned}$$
(A.11)

Note that if \(u\in C^1({{\overline{U}}})\) then

$$\begin{aligned} \partial _y u(x, \eta (x)) -(\nabla _xu)(x ,\eta (x))\cdot \nabla \eta (x)=\Xi (x, 0). \end{aligned}$$

We shall appeal to Theorem A.6 below to prove that the trace \(\Xi \vert _{z=0}\) is well-defined in \(H^{-\frac{1}{2}}({\mathbb {R}}^d)\) for \(u\in \dot{H}^1(U_h)\). To this end, we use (A.11) to have

$$\begin{aligned} \Vert \partial _z\Xi \Vert _{L^2((-1, 0); H^{-1}({\mathbb {R}}^d))}\leqq \Vert \widetilde{f}\Vert _{L^2((-1, 0); H^{-1}({\mathbb {R}}^d))}+\Vert \Lambda \widetilde{u}\Vert _{L^2((-1, 0); L^2({\mathbb {R}}^d))} \end{aligned}$$

where

$$\begin{aligned} \Vert \Lambda \widetilde{u}\Vert _{L^2((-1, 0); L^2({\mathbb {R}}^d))}\leqq h^{-\frac{1}{2}}\Vert \nabla _xu\Vert _{L^2(U_h)}. \end{aligned}$$

On the other hand,

$$\begin{aligned} \Vert \widetilde{f}\Vert _{L^2((-1, 0); H^{-1}({\mathbb {R}}^d))}\leqq \Vert \widetilde{f}\Vert _{L^2(S)}\leqq h^{-\frac{1}{2}}\Vert f\Vert _{L^2(U_h)}, \end{aligned}$$

hence

$$\begin{aligned} \Vert \partial _z\Xi \Vert _{L^2((-1, 0); H^{-1}({\mathbb {R}}^d))}\leqq h^{-\frac{1}{2}}\big (\Vert f\Vert _{L^2(U_h)}+\Vert \nabla _xu\Vert _{L^2(U_h)}\big ). \end{aligned}$$
(A.12)

Combining (A.10) and (A.12) we conclude by virtue of Theorem A.6 that \(\Xi \in C([-1, 0]; L^2({\mathbb {R}}^d))\) and

$$\begin{aligned} \Vert \Xi \Vert _{ C([-1, 0]; L^2({\mathbb {R}}^d))}\leqq Ch^{-\frac{1}{2}}(1+\Vert \nabla \eta \Vert _{L^\infty })\Vert \nabla _{x, y}u\Vert _{L^2(U_h)}+Ch^{-\frac{1}{2}}\Vert f\Vert _{L^2(U_h)} \end{aligned}$$
(A.13)

for some absolute constant \(C>0\). \(\quad \square \)

Theorem A.6

([48, Theorem 3.1]) Let \(s \in {\mathbb {R}}\) and I be a closed (bounded or unbounded) interval in \({\mathbb {R}}\). Let \(u\in L^2_z(I, H^{s+ \frac{1}{2}}({\mathbb {R}}^d))\) such that \(\partial _z u \in L_z^2(I, H^{s-\frac{1}{2}}({\mathbb {R}}^d)).\) Then \(u \in BC(I, H^{s}({\mathbb {R}}^d))\) and there exists an absolute constant \(C>0\) such that

$$\begin{aligned} \sup _{z\in I}\Vert u(z, \cdot ) \Vert _{H^{s}({\mathbb {R}}^d)} \leqq C \left( \Vert u\Vert _{L^2(I,H^{s+ \frac{1}{2}}({\mathbb {R}}^d))}+ \Vert \partial _z u\Vert _{L^2(I,H^{s- \frac{1}{2}}({\mathbb {R}}^d))} \right) . \end{aligned}$$

1.4 A.4. Proof of Proposition 3.2

Assuming (3.14), let us prove (3.15). By comparing \(\sigma _1\) with \(\min \{\sigma _1, \sigma _2\}+M\) it suffices to prove the following claim. If \(\sigma \geqq 2h>0\) for some \(h>0\), then for any \(M>0\), there exists \(C=C(d, h, M)\) such that

$$\begin{aligned} \Vert f\Vert _{\widetilde{H}^\frac{1}{2}_{\sigma +M}}\leqq C\Vert f\Vert _{\widetilde{H}^\frac{1}{2}_{\sigma }}. \end{aligned}$$
(A.14)

By iteration, (A.14) will follow from the same estimate with M replaced by \(\delta =\frac{h}{10}\). To prove this, we first note that

$$\begin{aligned} \begin{aligned} \Vert f\Vert _{\widetilde{H}^\frac{1}{2}_{\sigma +\delta }}^2&=\Vert f\Vert _{\widetilde{H}^\frac{1}{2}_{\sigma }}^2+ \int _{x\in {\mathbb {R}}^d}\int _{\{\sigma (x)\leqq \vert k\vert \leqq \sigma (x)+\delta \}}\\&\qquad \frac{\vert f(x+k)-f(x)\vert ^2}{\vert k\vert ^{d+1}}\,\hbox {d}k\,\hbox {d}x:=\Vert f\Vert _{\widetilde{H}^\frac{1}{2}_{\sigma }}^2+ J. \end{aligned} \end{aligned}$$

Letting \(\theta (x)=1-\frac{h}{2\sigma (x)}\), we have \(\theta \in [\frac{1}{2}, 1]\) and

$$\begin{aligned} \vert y\theta (x)\vert \leqq \sigma (x)-\frac{h}{4}\quad \text {when}\quad \vert y\vert \leqq \sigma (x)+\delta . \end{aligned}$$
(A.15)

Then, for \(\vert u\vert \leqq h/4\), we decompose \(J\leqq 2J_1+2J_2\) where

$$\begin{aligned} \begin{aligned} J_1&= \int _{x\in {\mathbb {R}}^d}\int _{\{\sigma (x)\leqq \vert k\vert \leqq \sigma (x)+\delta \}}\frac{\vert f(x+k)-f(x+\theta k+u)\vert ^2}{\vert k\vert ^{d+1}}\,\hbox {d}k\,\hbox {d}x\\ J_2&=\int _{x\in {\mathbb {R}}^d}\int _{\{\sigma (x)\leqq \vert k\vert \leqq \sigma (x)+\delta \}}\frac{\vert f(x+\theta k+u)-f(x)\vert ^2}{\vert k\vert ^{d+1}}\,\hbox {d}k\,\hbox {d}x. \end{aligned} \end{aligned}$$

We can easily dispense with \(J_2\) by changing variable \(k\mapsto z=\theta k+u\) and using (A.15):

$$\begin{aligned} \begin{aligned} J_2&\lesssim \int _{x\in {\mathbb {R}}^d}\int _{\{\vert z\vert \leqq \sigma (x)\}}\frac{\vert f(x+z)-f(x)\vert ^2}{\vert z\vert ^{d+1}}\,\hbox {d}x\,\hbox {d}z=\Vert f\Vert _{H^s_{\sigma }}^2\\ \end{aligned} \end{aligned}$$

uniformly in \(\vert u\vert \leqq h/4\). To estimate \(J_1\), we average over \(\vert u\vert \leqq h/4\):

$$\begin{aligned}&J_1\lesssim h^{-d} \int _{u\in B(0,h/4)}\int _{x\in {\mathbb {R}}^d}\int _{\{\sigma (x)\leqq \vert k\vert \leqq \sigma (x)+\delta \}}\\&\quad \frac{\vert f(x+k)-f(x+ k+(\theta -1)k+u)\vert ^2}{\vert k\vert ^{d+1}}\,\hbox {d}k\,\hbox {d}x\,\hbox {d}u. \end{aligned}$$

Since \(|(\theta -1)k+u|\leqq h\), by the changes of variables \(u\mapsto (\theta -1)k+u\) and then \(k\mapsto k+x\), we get

$$\begin{aligned} \begin{aligned} J_1&\lesssim h^{-d} \int _{u\in B(0,h)}\int _{x,k\in {\mathbb {R}}^d}\\&\quad \frac{\vert f(x+k)-f(x+k+u)\vert ^2}{\vert k\vert ^{d+1}}{{1}}_{\{\sigma (x)\leqq \vert k\vert \leqq \sigma (x)+\delta \}}\,\hbox {d}k\,\hbox {d}x\,\hbox {d}u\\&\lesssim h^{-d}\int _{z\in {\mathbb {R}}^d} \int _{u\in B(0,h)}\vert f(z)-f(z+u)\vert ^2 \\&\quad \left\{ \int _{x\in {\mathbb {R}}^d}\frac{1}{\vert z-x\vert ^{d+1}}{{1}}_{\{\sigma (x)\leqq \vert z-x\vert \leqq \sigma (x)+\delta \}}\,\hbox {d}x\right\} \,\hbox {d}u\,\hbox {d}z\\&\lesssim \int _{z\in {\mathbb {R}}^d} \int _{u\in B(0,h)}\frac{\vert f(z)-f(z+u)\vert ^2}{\vert u\vert ^{d+1}} \,\hbox {d}u\,\hbox {d}z\\&\lesssim \Vert f\Vert _{H^\frac{1}{2}_{\sigma }}^2, \end{aligned} \end{aligned}$$

which finishes the proof.

Appendix B. Proof of (2.8) and (2.9)

Since \(p^+(x, \eta (x))=p^-(x, \eta (x))\) we have

$$\begin{aligned} \nabla _xp^+-\nabla _xp^-=(\partial _yp^--\partial _yp^+)\nabla \eta \quad \text {on}~\Sigma =\{y=\eta (x)\}. \end{aligned}$$

Then

$$\begin{aligned}&\sqrt{1+|\nabla \eta |^2}RT=-(\nabla _x p^+-\nabla _xp^-)\vert _\Sigma \cdot \nabla \eta +(\partial _y p^+-\partial _yp^-)\vert _\Sigma \\&\quad =(\partial _y p^+-\partial _yp^-)\vert _\Sigma (1+|\nabla \eta |^2). \end{aligned}$$

Finally, using the fact that

$$\begin{aligned} \partial _yp^\pm \vert _\Sigma =\partial _yq^\pm \vert _\Sigma -\rho ^\pm =B^\pm -\rho ^\pm , \end{aligned}$$

we obtain

$$\begin{aligned} RT=\sqrt{1+|\nabla \eta |^2}[(\rho ^--\rho ^+)-(B^--B^+)], \end{aligned}$$

which proves (2.8). As for (2.9), we use the Darcy law (1.5) and the continuity (1.7) of \(u\cdot n\) to have

$$\begin{aligned} \mu ^\pm u\cdot n+\nabla p^\pm =-(0, \rho ^\pm )\cdot n=-\rho ^\pm (1+|\nabla \eta |^2)^{-\frac{1}{2}}, \end{aligned}$$

yielding

$$\begin{aligned} RT=(\nabla p^+-\nabla p^-)\cdot n=(\mu ^--\mu ^+)u\cdot n+(\rho ^--\rho ^+)\rho ^\pm (1+|\nabla \eta |^2)^{-\frac{1}{2}}. \end{aligned}$$

Appendix C. Paradifferential Calculus

This section is devoted to a review of basic features of Bony’s paradifferential calculus (see for example [3, 12, 45, 52]).

Definition C.1

1. (Symbols) Given \(\rho \in [0, \infty )\) and \(m\in {\mathbb {R}}\)\(\Gamma _{\rho }^{m}({\mathbb {R}}^d)\) denotes the space of locally bounded functions \(a(x,\xi )\) on \({\mathbb {R}}^d\times ({\mathbb {R}}^d{\setminus } 0)\), which are \(C^\infty \) with respect to \(\xi \) for \(\xi \ne 0\) and such that, for all \(\alpha \in {\mathbb {N}}^d\) and all \(\xi \ne 0\), the function \(x\mapsto \partial _\xi ^\alpha a(x,\xi )\) belongs to \(W^{\rho ,\infty }({\mathbb {R}}^d)\) and there exists a constant \(C_\alpha \) such that

$$\begin{aligned} \forall |\xi |\geqq \frac{1}{2},\quad \Vert \partial _\xi ^\alpha a(\cdot ,\xi )\Vert _{W^{\rho ,\infty }({\mathbb {R}}^d)}\leqq C_\alpha (1+|\xi |)^{m-|\alpha |}. \end{aligned}$$

Let \(a\in \Gamma _{\rho }^{m}({\mathbb {R}}^d)\), we define the semi-norm

$$\begin{aligned} M_{\rho }^{m}(a)= \sup _{|\alpha |\leqq 2(d+2) +\rho ~}\sup _{|\xi | \geqq \frac{1}{2}~} \Vert (1+|\xi |)^{|\alpha |-m}\partial _\xi ^\alpha a(\cdot ,\xi )\Vert _{W^{\rho ,\infty }({\mathbb {R}}^d)}. \end{aligned}$$
(C.1)

2. (Paradifferential operators) Given a symbol a, we define the paradifferential operator \(T_a\) by

$$\begin{aligned} \widehat{T_a u}(\xi )=(2\pi )^{-d}\int \chi (\xi -\eta ,\eta ){\widehat{a}}(\xi -\eta ,\eta )\Psi (\eta ){\widehat{u}}(\eta ) \, d\eta , \end{aligned}$$
(C.2)

where \({\widehat{a}}(\theta ,\xi )=\int e^{-ix\cdot \theta }a(x,\xi )\, \,\hbox {d}x\) is the Fourier transform of a with respect to the first variable; \(\chi \) and \(\Psi \) are two fixed \(C^\infty \) functions such that

$$\begin{aligned} \Psi (\eta )=0\quad \text {for } |\eta |\leqq \frac{1}{5},\quad \Psi (\eta )=1\quad \text {for }|\eta |\geqq \frac{1}{4}, \end{aligned}$$
(C.3)

and \(\chi (\theta ,\eta )\) satisfies, for \(0<\varepsilon _1<\varepsilon _2\) small enough,

$$\begin{aligned} \chi (\theta ,\eta )=1 \quad \text {if}\quad |\theta |\leqq \varepsilon _1| \eta |,\quad \chi (\theta ,\eta )=0 \quad \text {if}\quad |\theta |\geqq \varepsilon _2|\eta |, \end{aligned}$$

and such that

$$\begin{aligned} \forall (\theta ,\eta ), \quad | \partial _\theta ^\alpha \partial _\eta ^\beta \chi (\theta ,\eta )|\leqq C_{\alpha ,\beta }(1+| \eta |)^{-|\alpha |-|\beta |}. \end{aligned}$$

Remark C.2

The cut-off \(\chi \) can be appropriately chosen so that when \(a=a(x)\), the paradifferential operator \(T_au\) becomes the usual paraproduct.

Definition C.3

Let \(m\in {\mathbb {R}}\). An operator T is said to be of order m if, for all \(\mu \in {\mathbb {R}}\), it is bounded from \(H^{\mu }\) to \(H^{\mu -m}\).

Symbolic calculus for paradifferential operators is summarized in the following theorem:

Theorem C.4

(Symbolic calculus) Let \(m\in {\mathbb {R}}\) and \(\rho \in [0,1)\).

  1. (i)

    If \(a \in \Gamma ^m_0({\mathbb {R}}^d)\), then \(T_a\) is of order m. Moreover, for all \(\mu \in {\mathbb {R}}\) there exists a constant K such that

    $$\begin{aligned} \Vert T_a \Vert _{H^{\mu }\rightarrow H^{\mu -m}}\leqq K M_{0}^{m}(a). \end{aligned}$$
    (C.4)
  2. (ii)

    If \(a\in \Gamma ^{m}_{\rho }({\mathbb {R}}^d), b\in \Gamma ^{m'}_{\rho }({\mathbb {R}}^d)\) then \(T_a T_b -T_{ab}\) is of order \(m+m'-\rho \). Moreover, for all \(\mu \in {\mathbb {R}}\) there exists a constant K such that

    $$\begin{aligned} \begin{aligned} \Vert T_a T_b - T_{a b} \Vert _{H^{\mu }\rightarrow H^{\mu -m-m'+\rho }}&\leqq K (M_{\rho }^{m}(a)M_{0}^{m'}(b)+M_{0}^{m}(a)M_{\rho }^{m'}(b)). \end{aligned} \end{aligned}$$
    (C.5)
  3. (iii)

    Let \(a\in \Gamma ^{m}_{\rho }({\mathbb {R}}^d)\). Denote by \((T_a)^*\) the adjoint operator of \(T_a\) and by \({\overline{a}}\) the complex conjugate of a. Then \((T_a)^* -T_{{\overline{a}}}\) is of order \(m-\rho \) where Moreover, for all \(\mu \) there exists a constant K such that

    $$\begin{aligned} \Vert (T_a)^* - T_{{\overline{a}}} \Vert _{H^{\mu }\rightarrow H^{\mu -m+\rho }} \leqq K M_{\rho }^{m}(a). \end{aligned}$$
    (C.6)

Remark C.5

In the definition (C.2) of paradifferential operators, the cut-off \(\Psi \) removes the low frequency part of u. In particular, when \(a\in \Gamma ^m_0\) we have

$$\begin{aligned} \Vert T_a u\Vert _{H^\sigma }\leqq CM_0^m(a)\Vert \nabla u\Vert _{H^{\sigma +m-1}}. \end{aligned}$$

To handle symbols of negative Zygmund regularity, we shall appeal to the following.

Proposition C.6

([3, Proposition 2.12]) Let \(m\in {\mathbb {R}}\) and \(\rho <0\). We denote by \(\dot{\Gamma }^m_\rho ({\mathbb {R}}^d)\) the class of symbols \(a(x, \xi )\) that are homogeneous of order m in \(\xi \), smooth in \(\xi \in {\mathbb {R}}^d{\setminus } \{0\}\) and such that

$$\begin{aligned} M_{\rho }^{m}(a)= \sup _{|\alpha |\leqq 2(d+2) +\rho ~}\sup _{|\xi | \geqq \frac{1}{2}~} \Vert |\xi |^{|\alpha |-m}\partial _\xi ^\alpha a(\cdot ,\xi )\Vert _{C^\rho _*({\mathbb {R}}^d)}<\infty . \end{aligned}$$

If \(a\in {{\dot{\Gamma }}}^m_\rho \) then the operator \(T_a\) defined by (C.2) is of order \(m-\rho \).

Notation C.7

If a and u depend on a parameter \(z\in J\subset {\mathbb {R}}\) we denote

$$\begin{aligned} (T_au)(z)=T_{a(z)}u(z),\quad M^m_\rho (a; J)=\sup _{z\in J}M^m_\rho (a(z)). \end{aligned}$$

If \(M^m_\rho (a; J)\) is finite we write \(a\in \Gamma ^m_\rho ({\mathbb {R}}^d\times J)\).

Definition C.8

Given two functions a,  u defined on \({\mathbb {R}}^d\) the Bony’s remainder is defined by

$$\begin{aligned} R(a,u)=au-T_a u-T_u a. \end{aligned}$$

We gather here several useful product and paraproduct rules.

Theorem C.9

Let \(s_0\), \(s_1\) and \(s_2\) be real numbers.

  1. (1)

    For any \(s\in {\mathbb {R}}\),

    $$\begin{aligned} \Vert T_a u\Vert _{H^s}\leqq C\Vert a\Vert _{L^\infty }\Vert u\Vert _{H^s}. \end{aligned}$$
    (C.7)
  2. (2)

    If \(s_0\leqq s_2\) and \(s_0 < s_1 +s_2 -\frac{d}{2}\), then

    $$\begin{aligned} \Vert T_a u\Vert _{H^{s_0}}\leqq C \Vert a\Vert _{H^{s_1}}\Vert u\Vert _{H^{s_2}}. \end{aligned}$$
    (C.8)
  3. (3)

    If \(s_1+s_2>0\) then

    $$\begin{aligned}&\Vert R(a,u) \Vert _{H^{s_1 + s_2-\frac{d}{2}}({\mathbb {R}}^d)} \leqq C \Vert a \Vert _{H^{s_1}({\mathbb {R}}^d)}\Vert u\Vert _{H^{s_2}({\mathbb {R}}^d)}, \end{aligned}$$
    (C.9)
    $$\begin{aligned}&\Vert R(a,u) \Vert _{H^{s_1+s_2}({\mathbb {R}}^d)} \leqq C \Vert a \Vert _{C^{s_1}_*({\mathbb {R}}^d)}\Vert u\Vert _{H^{s_2}({\mathbb {R}}^d)}. \end{aligned}$$
    (C.10)
  4. (4)

    If \(s_1+s_2> 0\), \(s_0\leqq s_1\) and \(s_0< s_1+s_2-\frac{d}{2}\) then

    $$\begin{aligned} \Vert au - T_a u\Vert _{H^{s_0}}\leqq C \Vert a\Vert _{H^{s_1}}\Vert u\Vert _{H^{s_2}}. \end{aligned}$$
    (C.11)
  5. (5)

    If \(s_1+s_2> 0\), \(s_0\leqq s_1\), \(s_0\leqq s_2\) and \(s_0< s_1+s_2-\frac{d}{2} \) then

    $$\begin{aligned} \Vert u_1 u_2 \Vert _{H^{s_0}}\leqq C \Vert u_1\Vert _{H^{s_1}}\Vert u_2\Vert _{H^{s_2}}. \end{aligned}$$
    (C.12)

Theorem C.10

Consider \(F\in C^\infty ({\mathbb {C}}^N)\) such that \(F(0)=0\).

  1. (i)

    For \(s>\frac{d}{2}\), there exists a non-decreasing function \({\mathcal {F}}:{\mathbb {R}}_+\rightarrow {\mathbb {R}}_+\) such that, for any \(U\in H^s({\mathbb {R}}^d)^N\),

    $$\begin{aligned} \Vert F(U)\Vert _{H^s}\leqq {\mathcal {F}}\bigl (\Vert U\Vert _{L^\infty }\bigr )\Vert U\Vert _{H^s}. \end{aligned}$$
    (C.13)
  2. (ii)

    For \(s>0\), there exists an increasing function \({\mathcal {F}}:{\mathbb {R}}_+\rightarrow {\mathbb {R}}_+\) such that, for any \(U\in C_*^s({\mathbb {R}}^d)^N\),

    $$\begin{aligned} \Vert F(U)\Vert _{C_*^s}\leqq {\mathcal {F}}\bigl (\Vert U\Vert _{L^\infty }\bigr )\Vert U\Vert _{C_*^s}. \end{aligned}$$
    (C.14)

Theorem C.11

([10, Theorem 2.92] and [52, Theorem 5.2.4]) (Paralinearization for nonlinear functions) Let \(\mu ,~\tau \) be positive real numbers and let \(F\in C^{\infty }({\mathbb {C}}^N)\) be a scalar function satisfying \(F(0)=0\). If \(U=(u_j)_{j=1}^N\) with \(u_j\in H^{\mu }({\mathbb {R}}^d)\cap C_*^{\tau }({\mathbb {R}}^d)\) then we have

$$\begin{aligned} F(U)=\Sigma _{j=1}^NT_{\partial _jF(U)}u_j+R_F(U) \end{aligned}$$
(C.15)

with

$$\begin{aligned} \Vert R_F(U)\Vert _{ H^{\mu +\tau }}\leqq {\mathcal {F}}(\Vert U\Vert _{L^{\infty }})\Vert U\Vert _{C_*^{\tau }}\Vert U\Vert _{H^{\mu }}. \end{aligned}$$

Recall the definitions (3.32). The next proposition provides parabolic estimates for elliptic paradifferential operators.

Proposition C.12

([3, Proposition 2.18]) Let \(r\in {\mathbb {R}}\)\(\varrho \in (0,1)\)\(J=[z_0,z_1]\subset {\mathbb {R}}\) and let \(p\in \Gamma ^{1}_{\varrho }({\mathbb {R}}^d\times J)\) satisfying

$$\begin{aligned} {{\,\mathrm{Re}\,}}p(z;x,\xi ) \geqq c |\xi |, \end{aligned}$$

for some positive constant c. Then for any  \(f\in Y^r(J)\) and \(w_0\in H^{r}({\mathbb {R}}^d)\), there exists \(w\in X^{r}(J)\) solution of the parabolic evolution equation

$$\begin{aligned} \partial _z w + T_p w =f,\quad w\arrowvert _{z=z_0}=w_0, \end{aligned}$$
(C.16)

satisfying

$$\begin{aligned} \Vert w \Vert _{X^{r}(J)}\leqq {\mathcal {F}}\left( {\mathcal {M}}^1_\varrho (p), \frac{1}{c}\right) \left( \Vert w_0\Vert _{H^{r}}+ \Vert f\Vert _{Y^{r}(J)}\right) \end{aligned}$$

for some increasing function \({\mathcal {F}}\) depending only on r and \(\varrho \). Furthermore, this solution is unique in  \(X^s(J)\) for any \(s\in {\mathbb {R}}\).

Appendix D. Proof of Lemma 3.10

(1) Assuming (3.33), we prove (3.34). We decompose \(u_1u_2=T_{u_1}u_2+T_{u_2}u_1+R(u_1, u_2)\). Since \(s_0\leqq s_2+1\) and \(s_1+s_2>s_0+\frac{d}{2}-1\), (C.8) gives

$$\begin{aligned} \Vert T_{u_1}u_2\Vert _{L^2 H^{s_0-\frac{1}{2}}}\lesssim \Vert u_1\Vert _{L^\infty H^{s_1}}\Vert u_2\Vert _{L^2 H^{s_2+\frac{1}{2}}}\lesssim \Vert u_1\Vert _{X^{s_1}}\Vert u_2\Vert _{X^{s_2}}. \end{aligned}$$

The paraproduct \(T_{u_2}u_1\) can be estimated similarly. As for \(R(u_1, u_2)\) we use (C.9) and the conditions \(s_1+s_2+1>0\) and \(s_1+s_2>s_0+\frac{d}{2}-1\):

$$\begin{aligned} \Vert R(u_1, u_2)\Vert _{L^1 H^{s_0}}\lesssim \Vert u_1\Vert _{L^2H^{s_1+\frac{1}{2}}}\Vert u_2\Vert _{L^2 H^{s_2+\frac{1}{2}}}\lesssim \Vert u_1\Vert _{X^{s_1}}\Vert u_2\Vert _{X^{s_2}}. \end{aligned}$$

(2) Assuming (3.35), we prove (3.36). Again, we decompose \(u_1u_2=T_{u_1}u_2+T_{u_2}u_1+R(u_1, u_2)\). If \(u_1=a+b\) with \(a\in L^1 H^{s_1}\) and \(b\in L^2 H^{s_1-\frac{1}{2}}\) then

$$\begin{aligned} u_1u_2=T_{a}u_2+T_bu_2+T_{u_2}a+T_{u_2}b+R(a, u_2)+R(b, u_2). \end{aligned}$$

Using the conditions \(s_0\leqq s_2\) and \(s_1+s_2>s_0+\frac{d}{2}\), we can apply (C.8) to get

$$\begin{aligned}&\Vert T_{a}u_2\Vert _{L^1 H^{s_0}}\lesssim \Vert a\Vert _{L^1 H^{s_1}}\Vert u_2\Vert _{L^\infty H^{s_2}},\\&\Vert T_{b}u_2\Vert _{L^2 H^{s_0-\frac{1}{2}}}\lesssim \Vert b\Vert _{L^2 H^{s_1-\frac{1}{2}}}\Vert u_2\Vert _{L^\infty H^{s_2}}. \end{aligned}$$

Next from the conditions \(s_0\leqq s_1\) and \(s_1+s_2>s_0+\frac{d}{2}\), (C.8) yields

$$\begin{aligned}&\Vert T_{u_2}a\Vert _{L^1 H^{s_0}}\lesssim \Vert u_2\Vert _{L^\infty H^{s_2}} \Vert a\Vert _{L^1 H^{s_1}},\\&\Vert T_{u_2}b\Vert _{L^2 H^{s_0-\frac{1}{2}}}\lesssim \Vert u_2\Vert _{L^\infty H^{s_2}}\Vert b \Vert _{L^2 H^{s_1-\frac{1}{2}}}. \end{aligned}$$

Finally, under the conditions \(s_1+s_2>0\) and \(s_1+s_2>s_0+\frac{d}{2}\), using (C.9) we obtain

$$\begin{aligned}&\Vert R(a, u_2)\Vert _{L^1H^{s_0}}\lesssim \Vert a\Vert _{L^1 H^{s_1}}\Vert u_2\Vert _{L^\infty H^{s_2}},\\&\Vert R(b, u_2)\Vert _{L^1H^{s_0}}\lesssim \Vert b\Vert _{L^2 H^{s_1-\frac{1}{2}}}\Vert u_2\Vert _{L^2 H^{s_2+\frac{1}{2}}}. \end{aligned}$$

We have proved that

$$\begin{aligned} \Vert u_1u_2\Vert _{Y^{s_0}}\lesssim (\Vert a\Vert _{L^1 H^{s_1}}+\Vert b\Vert _{L^2 H^{s_1-\frac{1}{2}}})\Vert u_2\Vert _{X^{s_2}} \end{aligned}$$

for any decomposition \(u_1=a+b\). Therefore, (3.36) follows. We have also proved (3.37), (3.38) and (3.39).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.Q., Pausader, B. A Paradifferential Approach for Well-Posedness of the Muskat Problem. Arch Rational Mech Anal 237, 35–100 (2020). https://doi.org/10.1007/s00205-020-01494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01494-7

Navigation