Skip to main content
Log in

Disclinations in Limiting Landau–de Gennes Theory

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this article we study the low-temperature limit of a Landau–de Gennes theory. Within all \({\mathbb {S}}^2\)-valued \({\mathscr {R}}\)-axially symmetric maps (see Definition 1.1), the limiting energy functional has at least two distinct energy minimizers. One minimizer has a biaxial torus structure, while another minimizer has a split-core segment structure on the z-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alama, S., Bronsard, L., Lamy, X.: Minimizers of the Landau–de Gennes energy around a spherical colloid particle. Arch. Ration. Mech. Anal. 222, 427–450, 2016

    MathSciNet  MATH  Google Scholar 

  2. Alper, O., Hardt, R., Lin, F.-H.: Defects of liquid crystals with variable degree of orientation. Calc. Var. 56, 128, 2017

    MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L.: Existence of minimal energy configurations of nematic liquid crystals with variable degree of orientation. Manuscr. Math. 68, 215–228, 1990

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L.: Regularity of solutions of a degenerate elliptic variational problem. Manuscr. Math. 68, 309–326, 1990

    MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Virga, E.: A boundary value problem for nematic liquid crystals with a variable degree of orientation. Arch. Ration. Mech. Anal. 114, 335–347, 1991

    MathSciNet  MATH  Google Scholar 

  6. An, D., Wang, W., Zhang, P.W.: On equilibrium configurations of nematic liquid crystals droplet with anisotropic elastic energy. Res. Math. Sci. 4, 7, 2017

    MathSciNet  MATH  Google Scholar 

  7. Ball, J.M., Majumdar, A.: Nematic liquid crystals: from Maier-Saupe to a continuum theory. Proceedings of the European Conference on Liquid Crystals, Colmar, France, 19–24, 2009

  8. Ball, J.M., Zarnescu, A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202, 493–535, 2011

    MathSciNet  MATH  Google Scholar 

  9. Bauman, P., Park, J., Phillips, D.: Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech. Anal. 205, 795–826, 2012

    MathSciNet  MATH  Google Scholar 

  10. Bauman, P., Phillips, D.: Regularity and the behavior of eigenvalues for minimizers of a constrained \({\rm Q}\)-tensor energy for liquid crystals. Calc. Var. 55, 81, 2016

    MathSciNet  MATH  Google Scholar 

  11. Brezis, H., Coron, J.-M., Lieb, E.H.: Harmonic maps with defects. Commun. Math. Phys. 107(4), 649–705, 1986

    ADS  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L.A.: Further regularity for the Signorini problem. Commun. Partial. Differ. Equ. 4(9), 1067–1075, 1979

    MathSciNet  MATH  Google Scholar 

  13. Canevari, G.: Biaxiality in the asymptotic analysis of a \(2\)D Landau–de Gennes model for liquid crystals. ESAIM COCV21, 101–137, 2015

    MathSciNet  MATH  Google Scholar 

  14. Canevari, G.: Line defects in the small elastic constant limit of a three-dimensional Landau–de Gennes model. Arch. Ration. Mech. Anal. 223, 591–676, 2017

    MathSciNet  MATH  Google Scholar 

  15. Canevari, G., Ramaswamy, M., Majumdar, A.: Radial symmetry on three-dimensional shells in the Landau–de Gennes theory. Phys. D314, 18–34, 2016

    MathSciNet  MATH  Google Scholar 

  16. Chiccoli, C., Pasini, P., Semeria, F., Sluckin, T.J., Zannoni, C.: Monte Carlo simulation of the hedgehog defect core in spin systems. J. Phys. II Fr. 5, 427–436, 1995

    Google Scholar 

  17. Contreras, A., Lamy, X.: Biaxial escape in nematics at low temperature. J. Funct. Anal. 272(10), 3987–3997, 2017

    MathSciNet  MATH  Google Scholar 

  18. De Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Oxford University Press, Oxford 1995

    Google Scholar 

  19. Duzaar, F., Grotowski, F.: Energy minimizing harmonic maps with an obstacle at the free boundary. Manuscr. Math. 83, 291–314, 1994

    MathSciNet  MATH  Google Scholar 

  20. Duzaar, F., Steffen, K.: A partial regularity theorem for harmonic maps at a free boundary. Asymptot. Anal. 2, 299–343, 1989

    MathSciNet  MATH  Google Scholar 

  21. Duzaar, F., Steffen, K.: An optimal estimate for the singular set of harmonic mapping in the free boundary. J. Reine Angew. Math. 401, 157–187, 1989

    MathSciNet  MATH  Google Scholar 

  22. Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116, 101–113, 1991

    MathSciNet  MATH  Google Scholar 

  23. Evans, L.C., Kneuss, O., Tran, H.: Partial regularity for minimizers of singular energy functionals, with application to liquid crystal models. Trans. AMS368(5), 3389–3413, 2016

    MathSciNet  MATH  Google Scholar 

  24. Fratta, G.D., Robbins, J.M., Slastikov, V., Zarnescu, A.: Half-integer point defects in the \({\rm Q}\)-tensor theory of nematic liquid crystals. J. Nonlinear Sci. 26(1), 121–140, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  25. Gartland, E.C., Mkaddem, S.: Instability of radial hedgehog configurations in nematic liquid crystals under Landau–de Gennes free-energy models. Phys. Rev. E59, 563–567, 1999

    ADS  Google Scholar 

  26. Gartland, E.C., Mkaddem, S.: Fine structure of defects in radial nematic droplets. Phys. Rev. E62, 6694–6705, 2000

    ADS  Google Scholar 

  27. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin 2001

    MATH  Google Scholar 

  28. Han, Q., Lin, F.-H.: Elliptic Partial Differential Equations, 2nd Edn. Courant Lecture Notes 1. American Mathematical Society and Courant Institute of Mathematical Sciences, 2011

  29. Hardt, R., Kinderlehrer, D., Lin, F.-H.: Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105, 547–570, 1986

    ADS  MathSciNet  MATH  Google Scholar 

  30. Hardt, R., Kinderlehrer, D., Lin, F.-H.: The variety of configurations of static liquid crystals. In: Progress in Nonlinear Differential Equations and their Applications, vol. 4, pp. 115–132. Birkhäuser, Basel, 1990

  31. Hardt, R., Lin, F.-H.: Partially constrained boundary conditions with energy minimizing mapping. Commun. Pure Appl. Math. XLII, 309–334, 1989

    MathSciNet  MATH  Google Scholar 

  32. Hardt, R., Lin, F.-H., Poon, C.-C.: Axially symmetric harmonic maps minimizing a relaxed energy. Commun. Pure Appl. Math. XLV, 417–459, 1992

    MathSciNet  MATH  Google Scholar 

  33. Henao, D., Majumdar, A., Pisante, A.: Uniaxial versus biaxial character of nematic equilibria in three dimensions. Calc. Var. 56, 55, 2017

    MathSciNet  MATH  Google Scholar 

  34. Hu, Y.C., Qu, Y., Zhang, P.W.: On the disclination lines of nematic liquid crystals. Commun. Comput. Phys. 19, 354–379, 2016

    MathSciNet  MATH  Google Scholar 

  35. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Stability of the melting hedgehog in the Landau–de Gennes theory of nematic liquid crystals. Arch. Ration. Mech. Anal. 215, 633–673, 2015

    MathSciNet  MATH  Google Scholar 

  36. Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Instability of point defects in a two-dimensional nematic liquid crystal model. Ann. I. H. Poincaré AN33, 1131–1152, 2016

    ADS  MathSciNet  MATH  Google Scholar 

  37. Kralj, S., Virga, E.: Universal fine structure of nematic hedgehogs. J. Phys. A Math. Gen. 24, 829–838, 2001

    ADS  MathSciNet  MATH  Google Scholar 

  38. Lamy, X.: Some properties of the nematic radial hedgehog in the Landau–de Gennes theory. J. Math. Anal. Appl. 397, 586–594, 2013

    MathSciNet  MATH  Google Scholar 

  39. Lavrentovich, O.D., Terent’ev, E.M.: Phase transition altering the symmetry of topological point defects (hedgehogs) in a nematic liquid crystal. Zh. Eksp. Teor. Fiz. 91, 2084–2096, 1986

    Google Scholar 

  40. Lemaire, L., Wood, J.C.: Jacobi fields along harmonic \(2\)-spheres in \(3\)- and \(4\)-spheres are not all integrable. Tohoku Math. J. 61, 165–204, 2009

    MathSciNet  MATH  Google Scholar 

  41. Lin, F.-H.: On nematic liquid crystals with variable degree of orientation. Commun. Pure Appl. Math. 44, 453–468, 1991

    MathSciNet  MATH  Google Scholar 

  42. Lin, F.-H., Wang, C.-Y.: The Analysis of Harmonic Maps And Their Heat Flows. World Scientific Publishing Co. Pte. Ltd, Singapore 2008

    MATH  Google Scholar 

  43. Lin, F.-H., Wang, C.-Y.: Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. A Math. Phys. Eng. Sci. 372(2029), 20130361, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  44. Luckhaus, S.: Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37, 349–367, 1988

    MathSciNet  MATH  Google Scholar 

  45. Luckhaus, S.: Convergence of minimizers for the \(p\)-dirichlet integral. Math. Z. 213, 449–456, 1993

    MathSciNet  MATH  Google Scholar 

  46. Majumdar, A., Zarnescu, A.: Landau–de Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond. Arch. Ration. Mech. Anal. 196, 227–280, 2010

    MathSciNet  MATH  Google Scholar 

  47. Majumdar, A.: Equilibrium order parameters of liquid crystals in the Landau–de Gennes theory. Eur. J. Appl. Math. 21, 181–203, 2010

    MathSciNet  MATH  Google Scholar 

  48. Majumdar, A.: The radial-hedgehog solution in Landau–de Gennes’ theory for nematic liquid crystals. Eur. J. Appl. Math. 23, 61–97, 2012

    MathSciNet  MATH  Google Scholar 

  49. Morrey, Jr. C.B.: Multiple integrals in the calculus of variations (Grundlehren d.math.Wissenschaften in Einzeldarst.), vol. 130, Springer, Berlin, 1966

  50. Müller, F., Schikorra, A.: Boundary regularity via Uhlenbeck–Rivière decomposition. Anal Int Math J Anal Appl29(2), 199–220, 2009

    MATH  Google Scholar 

  51. Nečas, J.: Direct Methods in the Theory of Elliptic Equations, Springer Monographs in Mathematics. Springer. Berlin, 2012

  52. Parker, T.: Bubble tree convergence for harmonic maps. J. Differ. Geom. 44, 595–633, 1996

    MathSciNet  MATH  Google Scholar 

  53. Penzenstadler, E., Trebin, H.-R.: Fine structure of point defects and soliton decay in nematic liquid crystals. J. Phys. France50, 1027–1040, 1989

    Google Scholar 

  54. Petrosyan, A., Shahgholian, H., Uraltseva, N.: Regularity of Free Boundaries in Obstacle-Type Problems, Graduate Studies in Mathematics, vol. 136. American Mathematical Society, 2012

  55. Rivière, T., Struwe, M.: Partial regularity for harmonic maps and related problems. Commun. Pure Appl. Math. LXI, 451–463, 2008

    MathSciNet  MATH  Google Scholar 

  56. Rosso, R., Virga, E.G.: Metastable nematic hedgehogs. J. Phys. A29, 4247–4264, 1996

    ADS  MATH  Google Scholar 

  57. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17, 307–335, 1982

    MathSciNet  MATH  Google Scholar 

  58. Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem of harmonic maps. J. Differ. Geom. 18, 253–268, 1983

    MathSciNet  MATH  Google Scholar 

  59. Schoen, R., Uhlenbeck, K.: Regularity of minimizing harmonic maps into the sphere. Invent. Math. 78, 89–100, 1984

    ADS  MathSciNet  MATH  Google Scholar 

  60. Schopohl, N., Sluckin, T.J.: Hedgehog structure in nematic and magnetic systems. J. Phys. Fr. 49, 1097–1101, 1988

    Google Scholar 

  61. Simon, L.: Theorems on Regularity and Singularity of Energy Minimizing Maps. Lectures in Mathematics. ETH Zürich. Birkhäuser Verlag, 1996

  62. Sonnet, A., Kilian, A., Hess, S.: Alignment tensor versus director: description of defects in nematic liquid crystals. Phys. Rev. E52, 718–722, 1995

    ADS  Google Scholar 

Download references

Acknowledgements

The author is partially supported by RGC Grant of Hong Kong No. 14306414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yu.

Additional information

Communicated by F. Lin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y. Disclinations in Limiting Landau–de Gennes Theory. Arch Rational Mech Anal 237, 147–200 (2020). https://doi.org/10.1007/s00205-020-01505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01505-7

Navigation