Skip to main content
Log in

Cerebrovascular Reactivity in Special Operations Forces Combat Soldiers

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate how concussion history affects cerebrovascular reactivity (CVR) in Special Operations Forces (SOF) combat soldiers. We studied 104 SOF soldiers [age = 33.5 ± 4.3 years; height = 179.7 ± 6.3 cm; 59 (56.7%) with self-reported concussion history]. We employed transcranial Doppler (TCD) ultrasound to measure middle cerebral artery (MCA) velocity. Baseline TCD data were collected for 2 min. Changes in MCA velocity were measured in response to five breath-holding trials and five hyperventilation trials. Cerebrovascular reactivity was quantified by the breath-holding index (BHI), vasomotor reactivity reserve (VMRr), and percent change in overall response curves. Independent t tests were employed to assess group differences in BHI, and VMRr values. We employed mixed effects models with quadratic mean structures to assess group differences in percent change MCA velocity response curves. There were no significant group differences in BHI (t102 = 0.04, p = 0.97) or VMRr (t102 = -0.33, p = 0.75). There were no group differences in relative MCA velocity response curves during the breath-holding task (F1,5092 = 0.19, p = 0.66) or during the hyperventilation task (F1,5092 = 0.41, p = 0.52) between SOF soldiers with and without a self-reported concussion history. If CVR deficits exist immediately post-concussion, our study suggests that these deficits recover over time in this population. While long-term neurophysiological effects of blast-related injury are currently unknown, assessing CVR response may provide further insight into cerebrovascular function and overall physiological health following blast exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abutarboush, R., M. Gu, U. Kawoos, S. H. Mullah, Y. Chen, S. Y. Goodrich, M. Lashof-Sullivan, R. M. McCarron, J. K. Statz, R. S. Bell, J. R. Stone, and S. T. Ahlers. Exposure to blast overpressure impairs cerebral microvascular responses and alters vascular and astrocytic structure. J. Neurotrauma 36:3138–3157, 2019.

    Article  Google Scholar 

  2. Bailey, D. M., D. W. Jones, A. Sinnott, J. V. Brugniaux, K. J. New, D. Hodson, C. J. Marley, J. D. Smirl, S. Ogoh, and P. N. Ainslie. Impaired cerebral haemodynamic function associated with chronic traumatic brain injury in professional boxers. Clin. Sci. 124:177–189, 2013.

    Article  CAS  Google Scholar 

  3. Bandak, F. A., G. Ling, A. Bandak, and N. C. De Lanerolle. Injury biomechanics, neuropathology, and simplified physicsof explosive blast and impact mild traumatic brain injury. Handb. Clin. Neurol. 127:89–104, 2015.

    Article  CAS  Google Scholar 

  4. Barlow, K. M., L. D. Marcil, D. Dewey, H. L. Carlson, F. P. MacMaster, B. L. Brooks, and R. M. Lebel. Cerebral perfusion changes in post-concussion syndrome: a prospective controlled cohort study. J. Neurotrauma 34:996–1004, 2017.

    Article  Google Scholar 

  5. Champagne, A. A., N. S. Coverdale, M. Germuska, and D. J. Cook. Multi-parametric analysis reveals metabolic and vascular effects driving differences in BOLD-based cerebrovascular reactivity associated with a history of sport concussion. Brain Inj. 33:1479–1489, 2019.

    Article  Google Scholar 

  6. Choe, M. C., T. Babikian, J. DiFiori, D. A. Hovda, and C. C. Giza. A pediatric perspective on concussion pathophysiology. Curr. Opin. Pediatr. 24:689–695, 2012.

    Article  Google Scholar 

  7. Churchill, N., M. Hutchison, D. Richards, G. Leung, S. Graham, and T. A. Schweizer. Brain structure and function associated with a history of sport concussion: a multi-modal magnetic resonance imaging study. J. Neurotrauma 34:765–771, 2017.

    Article  Google Scholar 

  8. Churchill, N. W., M. G. Hutchison, S. J. Graham, and T. A. Schweizer. Symptom correlates of cerebral blood flow following acute concussion. Neuroimage Clin. 16:234–239, 2017.

    Article  Google Scholar 

  9. Claasen, J. A., R. Zhang, Q. Fu, S. Witkowski, and B. Levine. Transcranial Doppler estimation of cerebral blood flow and cerebrovascular conductance during modified rebreathing. J. Appl. Physiol. 102:870–877, 2007.

    Article  Google Scholar 

  10. Clausen, M., D. R. Pendergast, B. Willer, and J. Leddy. Cerebral blood flow during treadmill exercise is a marker of physiological postconcussion syndrome in female athletes. J. Head Trauma Rehabil. 31:215–224, 2016.

    Article  Google Scholar 

  11. Coverdale, N. S., M. B. Badrov, and J. K. Shoemaker. Impact of age on cerebrovascular dilation versus reactivity to hypercapnia. J. Cereb. Blood Flow Metab. 37:344–355, 2017.

    Article  Google Scholar 

  12. Elder, G. A., and A. Cristian. Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care. Mt Sinai J Med 76:111–118, 2009.

    Article  Google Scholar 

  13. Elder, G. A., M. A. Gama Sosa, R. De Gasperi, J. R. Stone, D. L. Dickstein, F. Haghighi, P. R. Hof, and S. T. Ahlers. Vascular and inflammatory factors in the pathophysiology of blast-induced brain injury. Front. Neurol. 6:48, 2015.

    Article  Google Scholar 

  14. Giza, C. C., and D. A. Hovda. The new neurometabolic cascade of concussion. Neurosurgery 75(Suppl 4):S24–33, 2014.

    Article  Google Scholar 

  15. Hart, J., M. A. Kraut, K. B. Womack, J. Strain, N. Didehbani, E. Bartz, H. Conover, S. Mansinghani, H. Lu, and C. M. Cullum. Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: a cross-sectional study. JAMA Neurol. 70:326–335, 2013.

    Article  Google Scholar 

  16. Lang, E. W., J. Lagopoulos, J. Griffith, K. Yip, A. Yam, Y. Mudaliar, H. M. Mehdorn, and N. W. C. Dorsch. Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow. J. Neurol. Neurosurg. Psychiatry 74:1053–1059, 2003.

    Article  CAS  Google Scholar 

  17. Len, T. K., and J. P. Neary. Cerebrovascular pathophysiology following mild traumatic brain injury. Clin. Physiol. Funct. Imaging 31:85–93, 2011.

    CAS  PubMed  Google Scholar 

  18. Len, T. K., J. P. Neary, G. J. G. Asmundson, D. G. Candow, D. G. Goodman, B. Bjornson, and Y. N. Bhambhani. Serial monitoring of CO2 reactivity following sport concussion using hypocapnia and hypercapnia. Brain Inj. 27:346–353, 2013.

    Article  Google Scholar 

  19. Len, T. K., J. P. Neary, G. J. G. Asmundson, D. G. Goodman, B. Bjornson, and Y. N. Bhambhani. Cerebrovascular reactivity impairment after sport-induced concussion. Med. Sci. Sports Exerc. 43:2241–2248, 2011.

    Article  Google Scholar 

  20. Lindquist, L. K., H. C. Love, and E. B. Elbogen. Traumatic brain injury in iraq and afghanistan veterans: new results from a national random sample study. J. Neuropsychiatry Clin. Neurosci. 29:254–259, 2017.

    Article  Google Scholar 

  21. Mac Donald, C. L., O. R. Adam, A. M. Johnson, E. C. Nelson, N. J. Werner, D. J. Rivet, and D. L. Brody. Acute post-traumatic stress symptoms and age predict outcome in military blast concussion. Brain 138:1314–1326, 2015.

    Article  Google Scholar 

  22. Markus, H. S., and M. J. Harrison. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke 23:668–673, 1992.

    Article  CAS  Google Scholar 

  23. McCrory, P., et al. Consensus statement on concussion in sport-the 5th international conference on concussion in sport held in Berlin, October 2016. Br. J. Sports Med. 51:838–847, 2017.

    PubMed  Google Scholar 

  24. Murray, C. K., S. A. Roop, and D. R. Hospenthal. Medical problems of detainees after the conclusion of major ground combat during operation Iraqi Freedom. Mil. Med. 170:501–504, 2005.

    Article  Google Scholar 

  25. Owens, B. D., J. F. Kragh, J. C. Wenke, J. Macaitis, C. E. Wade, and J. B. Holcomb. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom. J. Trauma 64:295–299, 2008.

    Article  Google Scholar 

  26. Peskind, E. R., D. Brody, I. Cernak, A. McKee, and R. L. Ruff. Military- and sports-related mild traumatic brain injury: clinical presentation, management, and long-term consequences. J. Clin. Psychiatry 74:180–188, 2013; (quiz 188).

    Article  Google Scholar 

  27. Purkayastha, S., F. A. Sorond, S. Lyng, J. Frantz, M. N. Murphy, L. S. Hynan, T. Sabo, and K. R. Bell. Impaired cerebral vasoreactivity despite symptom resolution in sports-related concussion. J. Neurotrauma 36:2385–2390, 2019.

    Article  Google Scholar 

  28. Robinson, M. E., D. C. Clark, W. P. Milberg, R. E. McGlinchey, and D. H. Salat. Characterization of differences in functional connectivity associated with close-range blast exposure. J. Neurotrauma 34:S53–S61, 2017.

    Article  Google Scholar 

  29. Settakis, G., A. Lengyel, C. Molnár, D. Bereczki, L. Csiba, and B. Fülesdi. Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests. J Neuroimaging 12:252–258, 2002.

    Article  Google Scholar 

  30. Silvestrini, M., F. Vernieri, P. Pasqualetti, M. Matteis, F. Passarelli, E. Troisi, and C. Caltagirone. Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA 283:2122–2127, 2000.

    Article  CAS  Google Scholar 

  31. Staszewski, J., E. Skrobowska, R. Piusińska-Macoch, B. Brodacki, and A. Stępień. Cerebral and extracerebral vasoreactivity in patients with different clinical manifestations of cerebral small-vessel disease: data from the significance of hemodynamic and hemostatic factors in the course of different manifestations of cerebral small-vessel disease study. J. Ultrasound Med. 38:975–987, 2019.

    Article  Google Scholar 

  32. Svaldi, D. O., C. Joshi, M. E. Robinson, T. E. Shenk, K. Abbas, E. A. Nauman, L. J. Leverenz, and T. M. Talavage. Cerebrovascular reactivity alterations in asymptomatic high school football players. Dev. Neuropsychol. 40:80–84, 2015.

    Article  Google Scholar 

  33. Svaldi, D. O., E. C. McCuen, C. Joshi, M. E. Robinson, Y. Nho, R. Hannemann, E. A. Nauman, L. J. Leverenz, and T. M. Talavage. Cerebrovascular reactivity changes in asymptomatic female athletes attributable to high school soccer participation. Brain Imaging Behav. 11:98–112, 2017.

    Article  Google Scholar 

  34. Terrio, H., L. A. Brenner, B. J. Ivins, J. M. Cho, K. Helmick, K. Schwab, K. Scally, R. Bretthauer, and D. Warden. Traumatic brain injury screening: preliminary findings in a US Army Brigade Combat Team. J. Head Trauma Rehabil. 24:14–23, 2009.

    Article  Google Scholar 

  35. Thibeault, C. M., S. Thorpe, M. J. O’Brien, N. Canac, M. Ranjbaran, I. Patanam, A. Sarraf, J. LeVangie, F. Scalzo, S. J. Wilk, R. Diaz-Arrastia, and R. B. Hamilton. A cross-sectional study on cerebral hemodynamics after mild traumatic brain injury in a pediatric population. Front. Neurol. 9:200, 2018.

    Article  Google Scholar 

  36. Tremblay, S., L. C. Henry, C. Bedetti, C. Larson-Dupuis, J.-F. Gagnon, A. C. Evans, H. Théoret, M. Lassonde, and L. De Beaumont. Diffuse white matter tract abnormalities in clinically normal ageing retired athletes with a history of sports-related concussions. Brain 137:2997–3011, 2014.

    Article  Google Scholar 

  37. Willie, C. K., F. L. Colino, D. M. Bailey, Y. C. Tzeng, G. Binsted, L. W. Jones, M. J. Haykowsky, J. Bellapart, S. Ogoh, K. J. Smith, J. D. Smirl, T. A. Day, S. J. Lucas, L. K. Eller, and P. N. Ainslie. Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J. Neurosci. Methods 196:221–237, 2011.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded with contract grant support from the United States Army Special Operations Command (USASOC) to the University of North Carolina at Chapel Hill (Chapel Hill, NC, USA). This work was also supported by funding secured by the Preservation of the Force and Family Program at US Special Operations Command and executed as a subaward issued to the University of North Carolina by the Henry M. Jackson Foundation under a cooperative agreement with the Uniformed Services University. Co-authors DeLellis, Healy, Kane, Lynch, and Means were employed by USASOC for part or all of the study period. The results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. We would like to thank the research team at the Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center for assistance with data collection. We would also like to thank LTC Kane Morgan, SFC Zac Prengler, SGM John Sims, MSG Daniel Carver, and SGM Lance Doody for assistance with the study.

Conflict of interest

The authors have no other conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Mihalik.

Additional information

Associate Editor Joel D Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roby, P.R., Chandran, A., Barczak-Scarboro, N.E. et al. Cerebrovascular Reactivity in Special Operations Forces Combat Soldiers. Ann Biomed Eng 48, 1651–1660 (2020). https://doi.org/10.1007/s10439-020-02514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02514-z

Keywords

Navigation