Skip to main content
Log in

Characteristics of oxidative stress and antioxidant defenses by a mixed culture of acidophilic bacteria in response to Co2+ exposure

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

During bioleaching of Cobalt from waste lithium-ion batteries, the biooxidation activity of acidophilic bacteria is inhibited by a high concentration of Co ion in the liquid phase. However, the mechanism for Co2+ toxicity to acidophilic bacteria has not been fully elucidated. In this study, the effects of Co2+ concentration on the biooxidation activity for Fe2+, intracellular reactive oxygen species (ROS) level and antioxidant defense systems in a mixed-culture of acidophilic bacteria (MCAB) were investigated. The results showed that the biooxidation activity of the MCAB was inhibited by Co2+. Furthermore, it was indicated that the intracellular ROS contents of the MCAB under conditions of 0.4 M and 0.6 M Co2+ were 2.60 and 3.34 times higher than that under the condition of 0 M Co2+. The increase in intracellular malondialdehyde content indicated that the oxidative damage was induced by Co2+. Moreover, the antioxidant systems in MCAB were affected by Co2+. It was observed that the Co2+ exposure increased the catalase and glutathione peroxidase activities while reducing the superoxide dismutase activity and the intracellular glutathione (GSH) content. It was found that an exogenous GSH supplementation eliminated excess intracellular ROS and improved the biooxidation activity of the MCAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azino–bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt)

CAT:

Catalase

Co:

Cobalt

FL:

Fluorescence intensity

GSH:

Glutathione

GSH-Px:

Glutathione peroxidase

H2O2 :

Hydrogen peroxide

·OH:

Hydroxyl radical

LOOH:

Lipoperoxide

MCAB:

Mixed-culture of acidophilic bacteria

MDA:

Malondialdehyde

ORP:

Oxidation–reduction potential

ROS:

Reactive oxygen species

\( {\text{O}}_{2}^{ \cdot } \) :

Superoxide anion

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

WLIBs:

Waste lithium-ion batteries

References

  • Aydin A, Orhan H, Sayal A, Ozata M, Sahin G, Işimer A (2001) Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin Biochem 34:65–70

    Article  CAS  Google Scholar 

  • Ballor NR, Nesbitt CC, Lueking DR (2006) Recovery of scrap iron metal value using biogenerated ferric iron. Biotechnol Bioeng 93:1089–1094. https://doi.org/10.1002/bit.20821

    Article  CAS  PubMed  Google Scholar 

  • Barras F, Fontecave M (2011) Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance. Metallom Integr Biometal Sci 3:1130–1134

    Article  CAS  Google Scholar 

  • Begg SL et al (2015) Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae Nature communications 6:6418–6419

    CAS  PubMed  Google Scholar 

  • Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM (1986) The antioxidant role of vitamin C. Adv Free Radic Biol Med 2:419–444

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Brigelius-Floh ER, Kipp A (2009) Glutathione peroxidases in different stages of carcinogenesis. Biochim Biophys Acta 1790:1555–1568

    Article  Google Scholar 

  • Cardenas JP, Moya F, Covarrubias P, Shmaryahu A, Levican G, Holmes DS, Quatrini R (2012) Comparative genomics of the oxidative stress response in bioleaching microorganisms. Hydrometallurgy 127–128:162–167. https://doi.org/10.1016/j.hydromet.2012.07.014

    Article  CAS  Google Scholar 

  • Chen G, Yang H, Li H, Tong L (2016) Recovery of cobalt as cobalt oxalate from cobalt tailings using moderately thermophilic bioleaching technology and selective sequential extraction. Minerals 6:67–78. https://doi.org/10.3390/min6030067

    Article  CAS  Google Scholar 

  • Chen X, Ma H, Luo C, Zhou T (2017) Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J Hazard Mater 326:77–86. https://doi.org/10.1016/j.jhazmat.2016.12.021

    Article  CAS  PubMed  Google Scholar 

  • Cheung LM, Cheung PCK, Ooi VEC (2003) Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81:249–255

    Article  CAS  Google Scholar 

  • Dopson M, Bakeraustin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959

    Article  CAS  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • El-Sharaky AS, Newairy AA, Badreldeen MM, Eweda SM, Sheweita SA (2007) Protective role of selenium against renal toxicity induced by cadmium in rats. Toxicology 235(3):185–193

    Article  CAS  Google Scholar 

  • Fantino JR, Py B, Fontecave M, Barras F (2010) A genetic analysis of the response of Escherichia coli to cobalt stress. Environ Microbiol 12:2846–2857

    CAS  PubMed  Google Scholar 

  • Ferrer A et al (2016) Cobalamin protection against oxidative stress in the acidophilic iron-oxidizing bacterium Leptospirillum Group II CF-1. Front Microbiol 7:748–759. https://doi.org/10.3389/fmicb.2016.00748

    Article  PubMed  PubMed Central  Google Scholar 

  • Garoui E, Ben AI, Driss D, Elwej A, Chaabouni SE, Boudawara T, Zeghal N (2013) Effects of cobalt on membrane ATPases, oxidant, and antioxidant values in the cerebrum and cerebellum of suckling rats. Biol Trace Elem Res 154:387–395

    Article  CAS  Google Scholar 

  • Goswami M, Mangoli SH, Jawali N (2006) Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrob Agents Chemother 50:949–954

    Article  CAS  Google Scholar 

  • Harrison JJ et al (2009) Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance. Environ Microbiol 11:2491–2509. https://doi.org/10.1111/j.1462-2920.2009.01973.x

    Article  CAS  PubMed  Google Scholar 

  • Helbig K, Bleuel C, Krauss GJ, Nies DH (2008) Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol 190:5431–5438

    Article  CAS  Google Scholar 

  • Hu YH, He ZG, Hu WX, Peng H, Zhong H (2004) Effect of two kinds of amino-acids on bioleaching metal sulfide. Trans Nonferrous Metals Soc China 14:794–797

    CAS  Google Scholar 

  • Jiang LL, Zhou JJ, Quan CS, Xiu ZL (2017) Advances in industrial microbiome based on microbial consortium for biorefinery. Bioresour Bioprocess 4:11–21

    Article  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87. https://doi.org/10.1016/j.tox.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  • Kubrak OI, Rovenko BM, Husak VV, Vasylkiv OY, Storey KB, Storey JM, Lushchak VI (2012) Goldfish exposure to cobalt enhances hemoglobin level and triggers tissue-specific elevation of antioxidant defenses in gills, heart and spleen. Compar Biochem Physiol Toxicol Pharmacol CBP 155:325–332

    Article  CAS  Google Scholar 

  • Kurhaluk N, Tkachenko H (2016) Modulators of KATP channels in the prevention of oxidative stress and antioxidant capacity improvement in the rat heart with different resistance to hypoxia upon cobalt treatment. J Vet Res 60:195–206. https://doi.org/10.1515/jvetres-2016-0029

    Article  CAS  Google Scholar 

  • Leonard S, Gannett PM, Rojanasakul Y, Schwegler-Berry D, Castranova V, Vallyathan V, Shi X (1998) Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem 70:239–244

    Article  CAS  Google Scholar 

  • Liang G, Tang J, Liu W, Zhou Q (2013) Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). J Hazard Mater 250–251:238–245

    Article  Google Scholar 

  • Liu L et al (2014) Inherent antioxidant activity and high yield production of antioxidants in Phanerochaete chrysosporium. Biochem Eng J 90:245–254. https://doi.org/10.1016/j.bej.2014.06.014

    Article  CAS  Google Scholar 

  • Liu J, Wu W, Zhang X, Zhu M, Tan W (2017) Adhesion properties of and factors influencing Leptospirillum ferriphilum in the biooxidation of refractory gold-bearing pyrite. Int J Mineral Process 160:39–46

    Article  CAS  Google Scholar 

  • Liu B, Huang Q, Su Y, Wang M, Ma Y, Kelly RM (2018) Cobalt accumulation and antioxidant system in pakchois under chemical immobilization in fluvo-aquic soil. J Soils Sedim 18:669–679. https://doi.org/10.1007/s11368-017-1804-3

    Article  CAS  Google Scholar 

  • Lwalaba JL et al (2017) Alleviating effects of calcium on cobalt toxicity in two barley genotypes differing in cobalt tolerance. Ecotoxicol Environ Saf 139:488–495

    Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  Google Scholar 

  • Mishra D, Kim DJ, Ralph DE, Ahn JG, Rhee YH (2008) Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage 28:333–338. https://doi.org/10.1016/j.wasman.2007.01.010

    Article  CAS  Google Scholar 

  • Mudd GM, Weng Z, Jowitt SM, Turnbull ID, Graedel TE (2013) Quantifying the recoverable resources of by-product metals: the case of cobalt. Ore Geol Rev 55:87–98. https://doi.org/10.1016/j.oregeorev.2013.04.010

    Article  Google Scholar 

  • Muller M (2011) Glutathione modulates the toxicity of, but is not a biologically relevant reductant for, the Pseudomonas aeruginosa redox toxin pyocyanin. Free Radic Biol Med 50:971–977

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750. https://doi.org/10.1007/s002530051457

    Article  CAS  PubMed  Google Scholar 

  • Niu Z, Zou Y, Xin B, Chen S, Liu C, Li Y (2014) Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Chemosphere 109:92–98

    Article  CAS  Google Scholar 

  • Norris PR et al (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142(4):775–783

    Article  CAS  Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990. https://doi.org/10.1016/j.cellsig.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  PubMed  Google Scholar 

  • Sakultung S, Pruksathorn K, Hunsom M (2008) Simultaneous recovery of Ni and Co from scrap mobile phone battery by acid leaching process. Asia-Pac J Chem Eng 3:374–379. https://doi.org/10.1002/apj.158

    Article  CAS  Google Scholar 

  • Tian J, Wu N, Li J, Liu Y, Guo J, Yao B, Fan Y (2007) Nickel-resistant determinant from Leptospirillum ferriphilum. Appl Environ Microbiol 73:2364–2368. https://doi.org/10.1128/AEM.00207-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyson GW et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37

    Article  CAS  Google Scholar 

  • Van Hille RP, Bromfield LV, Botha SS, Jones G, van Zyl AW, Harrison STL (2009) The effect of nutrient supplementation on growth and leaching performance of bioleaching bacteria. Adv Mater Res 71–73:413–416

    Article  Google Scholar 

  • Wang H, Zhang X, Zhu M, Tan W (2015) Effects of dissolved oxygen and carbon dioxide under oxygen-rich conditions on the biooxidation process of refractory gold concentrate and the microbial community. Miner Eng 80:37–44. https://doi.org/10.1016/j.mineng.2015.06.016

    Article  CAS  Google Scholar 

  • Wang T, Xu Z, Lu S, Xin M, Kong J (2016) Effects of glutathione on acid stress resistance and symbiosis between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Int Dairy J 61:22–28

    Article  CAS  Google Scholar 

  • Wu W, Liu X, Zhang X, Zhu M, Tan W (2018) Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron-sulfur-oxidizing bacteria. Bioresour Bioprocess 5:10–23. https://doi.org/10.1186/s40643-018-0196-6

    Article  Google Scholar 

  • Xin Y, Guo X, Chen S, Wang J, Wu F, Xin B (2016) Bioleaching of valuable metals Li Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J Clean Prod 116:249–258

    Article  CAS  Google Scholar 

  • Xu P et al (2015) Cadmium induced hydrogen peroxide accumulation and responses of enzymatic antioxidants in Phanerochaete chrysosporium. Ecol Eng 75:110–115. https://doi.org/10.1016/j.ecoleng.2014.11.060

    Article  Google Scholar 

  • Xue G et al (2014) Comparative genome analysis reveals metabolic versatility and environmental adaptations of sulfobacillus thermosulfidooxidans strain ST. PloS One 9:e99417

    Article  Google Scholar 

  • Zeeshan M, Murugadas A, Ghaskadbi S, Ramaswamy BR, Akbarsha MA (2017) Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity. Environ Pollut 224:54–69. https://doi.org/10.1016/j.envpol.2016.12.042

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Deng X, Luo S, Luo X, Zou J (2012) A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J Hazard Mater 199–200:164–169. https://doi.org/10.1016/j.jhazmat.2011.10.063

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Luo S, Deng X, Li L, Au C (2013) Influence of silver ions on bioleaching of cobalt from spent lithium batteries. Miner Eng 49:40–44. https://doi.org/10.1016/j.mineng.2013.04.021

    Article  CAS  Google Scholar 

  • Zhang RY, Xia JL, Peng JH, Zhang Q, Qiu GZ (2010) A new strain Leptospirillum ferriphilum YTW315 for bioleaching of metal sulfides ores. Trans Nonferrous Metals Soc China 20:135–141

    Article  CAS  Google Scholar 

  • Zheng C et al (2018) Effects of cadmium exposure on expression of glutathione synthetase system genes in Acidithiobacillus ferrooxidans. Extremophiles 22:895–902. https://doi.org/10.1007/s00792-018-1046-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Open Project Funding of the State Key Laboratory of Bioreactor Engineering of China, the National High Technology Research and Development Program of China (nos. 2007AA060904 and 2012AA061503) and the National Natural Science Foundation of China (NSFC21878083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Zhang or Wensong Tan.

Additional information

Communicated by I. Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Li, X., Zhang, X. et al. Characteristics of oxidative stress and antioxidant defenses by a mixed culture of acidophilic bacteria in response to Co2+ exposure. Extremophiles 24, 485–499 (2020). https://doi.org/10.1007/s00792-020-01170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-020-01170-4

Keywords

Navigation