Skip to main content
Log in

Formation of the First Stars and Black Holes

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We review the current status of knowledge concerning the early phases of star formation during cosmic dawn. This includes the first generations of stars forming in the lowest mass dark matter halos in which cooling and condensation of gas with primordial composition is possible at very high redshift (\(z > 20\)), namely metal-free Population III stars, and the first generation of massive black holes forming at such early epochs, the so-called black hole seeds. The formation of black hole seeds as end states of the collapse of Population III stars, or via direct collapse scenarios, is discussed. In particular, special emphasis is given to the physics of supermassive stars as potential precursors of direct collapse black holes, in light of recent results of stellar evolution models, and of numerical simulations of the early stages of galaxy formation. Furthermore, we discuss the role of the cosmic radiation produced by the early generation of stars and black holes at high redshift in the process of reionization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The accretion efficiency \(\eta \) directly depends on the spin of the black hole, and reaches the maximum value of \(\eta \sim 0.42\) for maximally rotating Kerr black holes. The radiative efficiency \(\epsilon _{r}\) depends both on the type of accretion and on the accretion efficiency: for radiatively efficient accretion events, one can assume \(\epsilon _{r} = \eta \).

  2. Photon losses by LLSs are also due to radiative recombinations. In analytical models it is standard practice, however, to include the effect of LLSs as a reduction in the source term through the finite mean free path of ionizing radiation. Three different quantities – the escape fraction, the gas clumping factor, and the mean free path – are then used to describe what are essentially radiative recombinations in the ISM, the IGM, and the LLSs. Numerical simulations of cosmic reionization show that such a separation into distinct regimes may indeed be reasonable (Kaurov and Gnedin 2015).

References

  • T. Abel, G.L. Bryan, M.L. Norman, The formation of the first star in the universe. Science 295, 93–98 (2002)

    ADS  Google Scholar 

  • T. Abel, J.H. Wise, G.L. Bryan, The H II region of a primordial star. Astrophys. J. Lett. 659, 87–90 (2007)

    ADS  Google Scholar 

  • P.A.R. Ade, Y. Akiba, A.E. Anthony, et al., A measurement of the cosmic microwave background B-mode polarization with POLARBEAR. Publ. Korean Astron. Soc. 30(2), 625–628 (2015)

    ADS  Google Scholar 

  • K. Ahn, P.R. Shapiro, I.T. Iliev, et al., The inhomogeneous background of H2-dissociating radiation during cosmic reionization. Astrophys. J. 695, 1430–1445 (2009)

    ADS  Google Scholar 

  • M.A. Alvarez, V. Bromm, P.R. Shapiro, The H II region of the first star. Astrophys. J. 639, 621–632 (2006)

    ADS  Google Scholar 

  • M.A. Alvarez, J.H. Wise, T. Abel, Accretion onto the first stellar-mass black holes. Astrophys. J. Lett. 701, 133–137 (2009)

    ADS  Google Scholar 

  • I. Appenzeller, R. Kippenhahn, General relativistic secular instability of supermassive stars. Astron. Astrophys. 11, 70 (1971)

    ADS  Google Scholar 

  • H. Atek, J. Richard, M. Jauzac, et al., Are ultra-faint galaxies at \(z = 6\)–8 responsible for cosmic reionization? Combined constraints from the Hubble Frontier Fields clusters and parallels. Astrophys. J. 814, 69 (2015)

    ADS  Google Scholar 

  • S.A. Balbus, J.F. Hawley, Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–53 (1998)

    ADS  Google Scholar 

  • E. Bañados, B.P. Venemans, C. Mazzucchelli, et al., An 800 million solar mass black hole in a significantly neutral universe at redshift 7.5. ArXiv e-prints (2017)

  • E. Bañados, B.P. Venemans, C. Mazzucchelli, et al., An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature 553, 473–476 (2018)

    ADS  Google Scholar 

  • R. Banerjee, K. Jedamzik, Are cluster magnetic fields primordial? Phys. Rev. Lett. 91(25), 251301 (2003)

    ADS  Google Scholar 

  • R. Barnett, S.J. Warren, G.D. Becker, et al., Observations of the Lyman series forest towards the redshift 7.1 quasar ULAS J1120+0641. Astron. Astrophys. 601, 16 (2017)

    Google Scholar 

  • T.W. Baumgarte, S.L. Shapiro, Evolution of rotating supermassive stars to the onset of collapse. Astrophys. J. 526, 941–952 (1999a)

    ADS  Google Scholar 

  • T.W. Baumgarte, S.L. Shapiro, Luminosity versus rotation in a supermassive star. Astrophys. J. 526, 937–940 (1999b)

    ADS  Google Scholar 

  • G.D. Becker, J.S. Bolton, P. Madau, et al., Evidence of patchy hydrogen reionization from an extreme Ly\(\alpha \) trough below redshift six. Mon. Not. R. Astron. Soc. 447, 3402–3419 (2015)

    ADS  Google Scholar 

  • M.C. Begelman, Evolution of supermassive stars as a pathway to black hole formation. Mon. Not. R. Astron. Soc. 402, 673–681 (2010)

    ADS  Google Scholar 

  • M.C. Begelman, M. Volonteri, M.J. Rees, Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006)

    ADS  Google Scholar 

  • R. Behrend, A. Maeder, Formation of massive stars by growing accretion rate. Astron. Astrophys. 373, 190–198 (2001)

    ADS  Google Scholar 

  • L. Biermann, Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum (miteinem Anhang von A. Schlüter). Z. Naturforsch. Teil A 5, 65 (1950)

    ADS  MathSciNet  MATH  Google Scholar 

  • J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 1987)

    MATH  Google Scholar 

  • G.S. Bisnovatyi-Kogan, Y.B. Zel’dovich, I.D. Novikov, Evolution of supermassive stars stabilized by large-scale motions. Sov. Astron. 11, 419 (1967)

    ADS  Google Scholar 

  • G.R. Blumenthal, S.M. Faber, R. Flores, et al., Contraction of dark matter galactic halos due to baryonic infall. Astrophys. J. 301, 27–34 (1986)

    ADS  Google Scholar 

  • P. Bodenheimer, Angular momentum evolution of young stars and disks. Annu. Rev. Astron. Astrophys. 33, 199–238 (1995)

    ADS  Google Scholar 

  • J.S. Bolton, M.G. Haehnelt, The observed ionization rate of the intergalactic medium and the ionizing emissivity at \(z >= 5\): evidence for a photon-starved and extended epoch of reionization. Mon. Not. R. Astron. Soc. 382, 325–341 (2007)

    ADS  Google Scholar 

  • S. Bonoli, L. Mayer, S. Callegari, Massive black hole seeds born via direct gas collapse in galaxy mergers: their properties, statistics and environment. Mon. Not. R. Astron. Soc. 437, 1576–1592 (2014)

    ADS  Google Scholar 

  • R.J. Bouwens, G.D. Illingworth, P.A. Oesch, et al., Lower-luminosity galaxies could reionize the Universe: very steep faint-end slopes to the UV luminosity functions at \(z >= 5\)–8 from the HUDF09 WFC3/IR observations. Astrophys. J. Lett. 752, 5 (2012)

    ADS  Google Scholar 

  • R.J. Bouwens, G.D. Illingworth, P.A. Oesch, et al., Reionization after Planck: the derived growth of the cosmic ionizing emissivity now matches the growth of the galaxy UV luminosity density. Astrophys. J. 811, 140 (2015)

    ADS  Google Scholar 

  • S. Bovino, D.R.G. Schleicher, J. Schober, Turbulent magnetic field amplification from the smallest to the largest magnetic Prandtl numbers. New J. Phys. 15(1), 013055 (2013)

    ADS  Google Scholar 

  • V. Bromm, R.B. Larson, The first stars. Annu. Rev. Astron. Astrophys. 42, 79–118 (2004)

    ADS  Google Scholar 

  • V. Bromm, A. Loeb, Formation of the first supermassive black holes. Astrophys. J. 596, 34–46 (2003)

    ADS  Google Scholar 

  • V. Bromm, P.S. Coppi, R.B. Larson, The formation of the first stars. I. The primordial star-forming cloud. Astrophys. J. 564, 23–51 (2002)

    ADS  Google Scholar 

  • S.P. Butler, A.R. Lima, T.W. Baumgarte, et al., Maximally rotating supermassive stars at the onset of collapse: the perturbative effects of gas pressure, magnetic fields, dark matter, and dark energy. Mon. Not. R. Astron. Soc. 477, 3694–3710 (2018)

    ADS  Google Scholar 

  • S. Chandrasekhar, The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity. Astrophys. J. 140, 417 (1964)

    ADS  MathSciNet  MATH  Google Scholar 

  • K.-J. Chen, A. Heger, S. Woosley, et al., The general relativistic instability supernova of a supermassive Population III star. Astrophys. J. 790, 162 (2014)

    ADS  Google Scholar 

  • J.-H. Choi, I. Shlosman, M.C. Begelman, Supermassive black hole formation at high redshifts via direct collapse: physical processes in the early stage. Astrophys. J. 774, 149 (2013)

    ADS  Google Scholar 

  • P.C. Clark, S.C.O. Glover, R.S. Klessen, The first stellar cluster. Astrophys. J. 672, 757–764 (2008)

    ADS  Google Scholar 

  • P.C. Clark, S.C.O. Glover, R.S. Klessen, et al., Gravitational fragmentation in turbulent primordial gas and the initial mass function of Population III stars. Astrophys. J. 727, 110 (2011a)

    ADS  Google Scholar 

  • P.C. Clark, S.C.O. Glover, R.J. Smith, et al., The formation and fragmentation of disks around primordial protostars. Science 331, 1040 (2011b)

    ADS  Google Scholar 

  • B. Commerçon, P. Hennebelle, T. Henning, Collapse of massive magnetized dense cores using radiation magnetohydrodynamics: early fragmentation inhibition. Astrophys. J. Lett. 742, 9 (2011)

    ADS  Google Scholar 

  • A. D’Aloisio, P.R. Upton Sanderbeck, M. McQuinn, et al., On the contribution of active galactic nuclei to the high-redshift metagalactic ionizing background. Mon. Not. R. Astron. Soc. 468, 4691–4701 (2017)

    ADS  Google Scholar 

  • H. Deng, L. Mayer, F. Meru, Convergence of the critical cooling rate for protoplanetary disk fragmentation achieved: the key role of numerical dissipation of angular momentum. Astrophys. J. 847(1), 43 (2017)

    ADS  Google Scholar 

  • H. Deng, L. Mayer, H. Latter, et al., Local simulations of MRI turbulence with meshless methods. Astrophys. J. Suppl. Ser. 241(2), 26 (2019)

    ADS  Google Scholar 

  • H. Deng, L. Mayer, H. Latter, Global simulations of self-gravitating magnetized protoplanetary disks (2020). arXiv:2001.08693

  • K.A. Dennison, T.W. Baumgarte, S.L. Shapiro, Maximally Rotating Supermassive Stars at the Onset of Collapse: Effects of Gas Pressure (2019). arXiv:1906.04190

  • M. Dijkstra, Z. Haiman, A. Mesinger, et al., Fluctuations in the high-redshift Lyman-Werner background: close halo pairs as the origin of supermassive black holes. Mon. Not. R. Astron. Soc. 391, 1961–1972 (2008)

    ADS  Google Scholar 

  • G. Dopcke, S.C.O. Glover, P.C. Clark, et al., On the initial mass function of low-metallicity stars: the importance of dust cooling. Astrophys. J. 766, 103 (2013)

    ADS  Google Scholar 

  • A. Doussot, H. Trac, R. Cen, SCORCH. II. Radiation-Hydrodynamic simulations of reionization with varying radiation escape fractions. ArXiv e-prints (2017)

  • X. Fan, M.A. Strauss, R.H. Becker, et al., Constraining the evolution of the ionizing background and the epoch of reionization with \(z\sim 6\) quasars. II. A sample of 19 quasars. Astron. J. 132, 117–136 (2006)

    ADS  Google Scholar 

  • C. Federrath, S. Sur, D.R.G. Schleicher, et al., A new jeans resolution criterion for (M)HD simulations of self-gravitating gas: application to magnetic field amplification by gravity-driven turbulence. Astrophys. J. 731, 62 (2011)

    ADS  Google Scholar 

  • C. Federrath, J. Schober, S. Bovino, et al., The turbulent dynamo in highly compressible supersonic plasmas. Astrophys. J. Lett. 797, 19 (2014)

    ADS  Google Scholar 

  • H. Feng, R. Soria, Ultraluminous X-ray sources in the Chandra and XMM-Newton era. Nature 55, 166–183 (2011)

    Google Scholar 

  • A. Fialkov, R. Barkana, D. Tseliakhovich, et al., Impact of the relative motion between the dark matter and baryons on the first stars: semi-analytical modelling. Mon. Not. R. Astron. Soc. 424, 1335–1345 (2012)

    ADS  Google Scholar 

  • S.L. Finkelstein, R.E. Ryan Jr., C. Papovich, et al., The evolution of the galaxy rest-frame ultraviolet luminosity function over the first two billion years. Astrophys. J. 810, 71 (2015)

    ADS  Google Scholar 

  • W.A. Fowler, The stability of supermassive stars. Astrophys. J. 144, 180 (1966)

    ADS  Google Scholar 

  • K. Freese, P. Bodenheimer, D. Spolyar, et al., Stellar structure of dark stars: a first phase of stellar evolution resulting from dark matter annihilation. Astrophys. J. Lett. 685, 101 (2008)

    ADS  Google Scholar 

  • K. Freese, P. Bodenheimer, P. Gondolo, et al., Dark stars: a new study of the first stars in the Universe. New J. Phys. 11(10), 105014 (2009)

    ADS  Google Scholar 

  • K.J. Fricke, Dynamical phases of supermassive stars. Astrophys. J. 183, 941–958 (1973)

    ADS  Google Scholar 

  • G.M. Fuller, S.E. Woosley, T.A. Weaver, The evolution of radiation-dominated stars. I—nonrotating supermassive stars. Astrophys. J. 307, 675–686 (1986)

    ADS  Google Scholar 

  • S.R. Furlanetto, A. Mesinger, The ionizing background at the end of reionization. Mon. Not. R. Astron. Soc. 394, 1667–1673 (2009)

    ADS  Google Scholar 

  • S. Gallerani, A. Ferrara, X. Fan, et al., Glimpsing through the high-redshift neutral hydrogen fog. Mon. Not. R. Astron. Soc. 386, 359–369 (2008)

    ADS  Google Scholar 

  • C.F. Gammie, Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys. J. 553, 174–183 (2001)

    ADS  Google Scholar 

  • E. Giallongo, A. Grazian, F. Fiore, et al., Space densities and emissivities of active galactic nuclei at \(z>4\). Astrophys. J. 884(1), 19 (2019)

    ADS  Google Scholar 

  • P. Girichidis, C. Federrath, R. Banerjee, et al., Importance of the initial conditions for star formation—I. Cloud evolution and morphology. Mon. Not. R. Astron. Soc. 413, 2741–2759 (2011)

    ADS  Google Scholar 

  • P. Girichidis, C. Federrath, R. Allison, et al., Importance of the initial conditions for star formation—III. Statistical properties of embedded protostellar clusters. Mon. Not. R. Astron. Soc. 420, 3264–3280 (2012b)

    ADS  Google Scholar 

  • P. Girichidis, C. Federrath, R. Banerjee, et al., Importance of the initial conditions for star formation—II. Fragmentation-induced starvation and accretion shielding. Mon. Not. R. Astron. Soc. 420, 613–626 (2012a)

    ADS  Google Scholar 

  • S. Glover, The formation of the first stars in the Universe. Space Sci. Rev. 117, 445–508 (2005)

    ADS  Google Scholar 

  • S. Glover, The first stars, in The First Galaxies, ed. by T. Wiklind, B. Mobasher, V. Bromm Astrophys. Space Sci. Library, vol. 396, 2013, p. 103

    Google Scholar 

  • N.Y. Gnedin, X. Fan, Cosmic reionization redux. Astrophys. J. 648, 1–6 (2006)

    ADS  Google Scholar 

  • D. Grasso, H.R. Rubinstein, Magnetic fields in the early Universe. Phys. Rep. 348, 163–266 (2001)

    ADS  Google Scholar 

  • T.H. Greif, The numerical frontier of the high-redshift Universe. Comput. Astrophys. Cosmol. 2, 3 (2015)

    ADS  Google Scholar 

  • T.H. Greif, J.L. Johnson, R.S. Klessen, et al., The first galaxies: assembly, cooling and the onset of turbulence. Mon. Not. R. Astron. Soc. 387, 1021–1036 (2008)

    ADS  Google Scholar 

  • T.H. Greif, S.D.M. White, R.S. Klessen, et al., The delay of Population III star formation by supersonic streaming velocities. Astrophys. J. 736, 147 (2011)

    ADS  Google Scholar 

  • T.H. Greif, V. Bromm, P.C. Clark, et al., Formation and evolution of primordial protostellar systems. Mon. Not. R. Astron. Soc. 424, 399–415 (2012)

    ADS  Google Scholar 

  • B. Greig, A. Mesinger, Z. Haiman, et al., Are we witnessing the epoch of reionisation at \(z=7.1\) from the spectrum of J1120+0641? Mon. Not. R. Astron. Soc. 466, 4239–4249 (2017)

    ADS  Google Scholar 

  • J.H. Grunhut, T. Rivinius, G.A. Wade, et al., HR 5907: discovery of the most rapidly rotating magnetic early B-type star by the MiMeS collaboration. Mon. Not. R. Astron. Soc. 419, 1610–1627 (2012)

    ADS  Google Scholar 

  • F. Haardt, P. Madau, Radiative transfer in a clumpy universe. IV. New synthesis models of the cosmic UV/X-ray background. Astrophys. J. 746, 125 (2012)

    ADS  Google Scholar 

  • L. Haemmerlé, G. Meynet, Magnetic braking of supermassive stars through winds. Astron. Astrophys. 623, 7 (2019)

    ADS  Google Scholar 

  • L. Haemmerlé, P. Eggenberger, G. Meynet, et al., Massive star formation by accretion. I. Disc accretion. Astron. Astrophys. 585, 65 (2016)

    ADS  Google Scholar 

  • L. Haemmerlé, P. Eggenberger, G. Meynet, et al., Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier? Astron. Astrophys. 602, 17 (2017)

    Google Scholar 

  • L. Haemmerlé, T.E. Woods, R.S. Klessen, et al., On the rotation of supermassive stars. Astrophys. J. Lett. 853, 3 (2018a)

    ADS  Google Scholar 

  • L. Haemmerlé, T.E. Woods, R.S. Klessen, et al., The evolution of supermassive Population III stars. Mon. Not. R. Astron. Soc. 474, 2757–2773 (2018b)

    ADS  Google Scholar 

  • L. Haemmerlé, G. Meynet, L. Mayer, et al., Maximally accreting supermassive stars: a fundamental limit imposed by hydrostatic equilibrium. Astron. Astrophys. 632, 2 (2019)

    ADS  Google Scholar 

  • A. Heger, C.L. Fryer, S.E. Woosley, et al., How massive single stars end their life. Astrophys. J. 591, 288–300 (2003)

    ADS  Google Scholar 

  • S. Hirano, H. Umeda, N. Yoshida, Evolution of primordial stars powered by dark matter annihilation up to the main-sequence stage. Astrophys. J. 736, 58 (2011)

    ADS  Google Scholar 

  • S. Hirano, T. Hosokawa, N. Yoshida, et al., One hundred first stars: protostellar evolution and the final masses. Astrophys. J. 781, 60 (2014)

    ADS  Google Scholar 

  • S. Hirano, T. Hosokawa, N. Yoshida, et al., Primordial star formation under the influence of far ultraviolet radiation: 1540 cosmological haloes and the stellar mass distribution. Mon. Not. R. Astron. Soc. 448, 568–587 (2015)

    ADS  Google Scholar 

  • S. Hirano, T. Hosokawa, N. Yoshida, et al., Supersonic gas streams enhance the formation of massive black holes in the early universe. Science 357, 1375–1378 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • T. Hosokawa, K. Omukai, Evolution of massive protostars with high accretion rates. Astrophys. J. 691, 823–846 (2009)

    ADS  Google Scholar 

  • T. Hosokawa, H.W. Yorke, K. Omukai, Evolution of massive protostars via disk accretion. Astrophys. J. 721, 478–492 (2010)

    ADS  Google Scholar 

  • T. Hosokawa, K. Omukai, N. Yoshida, et al., Protostellar feedback halts the growth of the first stars in the Universe. Science 334, 1250 (2011)

    ADS  Google Scholar 

  • T. Hosokawa, K. Omukai, H.W. Yorke, Rapidly accreting supergiant protostars: embryos of supermassive black holes? Astrophys. J. 756, 93 (2012)

    ADS  Google Scholar 

  • T. Hosokawa, N. Yoshida, K. Omukai, et al., Protostellar feedback and final mass of the second-generation primordial stars. Astrophys. J. Lett. 760, 37 (2012)

    ADS  Google Scholar 

  • T. Hosokawa, H.W. Yorke, K. Inayoshi, et al., Formation of primordial supermassive stars by rapid mass accretion. Astrophys. J. 778, 178 (2013)

    ADS  Google Scholar 

  • T. Hosokawa, S. Hirano, R. Kuiper, et al., Formation of massive primordial stars: intermittent UV feedback with episodic mass accretion. Astrophys. J. 824, 119 (2016)

    ADS  Google Scholar 

  • F. Hoyle, W.A. Fowler, On the nature of strong radio sources. Mon. Not. R. Astron. Soc. 125, 169 (1963)

    ADS  Google Scholar 

  • K. Inayoshi, E. Visbal, Z. Haiman, The Assembly of the First Massive Black Holes (2019). arXiv:1911.05791

  • F. Iocco, Dark matter capture and annihilation on the first stars: preliminary estimates. Astrophys. J. Lett. 677, 1 (2008)

    ADS  Google Scholar 

  • F. Iocco, A. Bressan, E. Ripamonti, et al., Dark matter annihilation effects on the first stars. Mon. Not. R. Astron. Soc. 390, 1655–1669 (2008)

    ADS  Google Scholar 

  • M. Ishigaki, R. Kawamata, M. Ouchi, et al., Full-Data Results of Hubble Frontier Fields: UV Luminosity Functions at \(z\sim 6-10\) and a Consistent Picture of Cosmic Reionization. ArXiv e-prints (2017)

  • M. Jeon, A.H. Pawlik, T.H. Greif, et al., The first galaxies: assembly with black hole feedback. Astrophys. J. 754, 34 (2012)

    ADS  Google Scholar 

  • M. Jeon, A.H. Pawlik, V. Bromm, et al., Radiative feedback from high-mass X-ray binaries on the formation of the first galaxies and early reionization. Mon. Not. R. Astron. Soc. 440, 3778–3796 (2014)

    ADS  Google Scholar 

  • J.L. Johnson, V. Bromm, The aftermath of the first stars: massive black holes. Mon. Not. R. Astron. Soc. 374, 1557–1568 (2007)

    ADS  Google Scholar 

  • A.A. Kaurov, N.Y. Gnedin, Cosmic reionization on computers. III. The clumping factor. Astrophys. J. 810, 154 (2015)

    ADS  Google Scholar 

  • A.P. Kazantsev, Enhancement of a magnetic field by a conducting fluid. Sov. Phys. JETP 26, 1031 (1968)

    ADS  Google Scholar 

  • E. Keto, The formation of massive stars: accretion, disks, and the development of hypercompact H II regions. Astrophys. J. 666, 976–981 (2007)

    ADS  Google Scholar 

  • R. Kippenhahn, E. Meyer-Hofmeister, On the radii of accreting main sequence stars. Astron. Astrophys. 54, 539–542 (1977)

    ADS  Google Scholar 

  • T. Kitayama, N. Yoshida, H. Susa, et al., The structure and evolution of early cosmological H II regions. Astrophys. J. 613, 631–645 (2004)

    ADS  Google Scholar 

  • R.S. Klessen, S.C.O. Glover, Physical processes in the interstellar medium, in Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality, Saas-Fee Advanced Course, vol. 43. (Springer, Berlin, 2016), p. 85

    Google Scholar 

  • K.M. Kratter, C.D. Matzner, Fragmentation of massive protostellar discs. Mon. Not. R. Astron. Soc. 373, 1563–1576 (2006)

    ADS  Google Scholar 

  • M.R. Krumholz, R.I. Klein, C.F. McKee, et al., The formation of massive star systems by accretion. Science 323, 754 (2009)

    ADS  Google Scholar 

  • R. Kuiper, H. Klahr, H. Beuther, et al., Circumventing the radiation pressure barrier in the formation of massive stars via disk accretion. Astrophys. J. 722, 1556–1576 (2010)

    ADS  Google Scholar 

  • R. Kuiper, H. Klahr, H. Beuther, et al., Three-dimensional simulation of massive star formation in the disk accretion scenario. Astrophys. J. 732, 20 (2011)

    ADS  Google Scholar 

  • R.B. Larson, Numerical calculations of the dynamics of collapsing proto-star. Mon. Not. R. Astron. Soc. 145, 271 (1969)

    ADS  Google Scholar 

  • M.A. Latif, Black hole formation via gas-dynamical processes, ed. by M. Latif, D. Schleicher (2019), pp. 99–113

  • M.A. Latif, D.R.G. Schleicher, W. Schmidt, et al., High-resolution studies of massive primordial haloes. Mon. Not. R. Astron. Soc. 430, 588–598 (2013a)

    ADS  Google Scholar 

  • M.A. Latif, D.R.G. Schleicher, W. Schmidt, et al., The small-scale dynamo and the amplification of magnetic fields in massive primordial haloes. Mon. Not. R. Astron. Soc. 432, 668–678 (2013b)

    ADS  Google Scholar 

  • M.A. Latif, J.C. Niemeyer, D.R.G. Schleicher, Impact of baryonic streaming velocities on the formation of supermassive black holes via direct collapse. Mon. Not. R. Astron. Soc. 440, 2969–2975 (2014a)

    ADS  Google Scholar 

  • M.A. Latif, D.R.G. Schleicher, W. Schmidt, Magnetic fields during the formation of supermassive black holes. Mon. Not. R. Astron. Soc. 440, 1551–1561 (2014b)

    ADS  Google Scholar 

  • M. Lazar, R. Schlickeiser, R. Wielebinski, et al., Cosmological effects of Weibel-type instabilities. Astrophys. J. 693, 1133–1141 (2009)

    ADS  Google Scholar 

  • H. Lee, S.-C. Yoon, On the role of the \(\varOmega \)\(\varGamma \) limit in the formation of Population III massive stars. Astrophys. J. 820, 135 (2016)

    ADS  Google Scholar 

  • J.-T. Li, G.M. Fuller, C.T. Kishimoto, Neutrino burst-generated gravitational radiation from collapsing supermassive stars. Phys. Rev. D 98(2), 023002 (2018)

    ADS  Google Scholar 

  • Y.T. Liu, S.L. Shapiro, B.C. Stephens, Magnetorotational collapse of very massive stars to black holes in full general relativity. Phys. Rev. D 76(8), 084017 (2007)

    ADS  Google Scholar 

  • R.C. Livermore, S.L. Finkelstein, J.M. Lotz, Directly observing the galaxies likely responsible for reionization. Astrophys. J. 835, 113 (2017)

    ADS  Google Scholar 

  • G. Lodato, P. Natarajan, Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. R. Astron. Soc. 371, 1813–1823 (2006)

    ADS  Google Scholar 

  • M.-M. Mac Low, R.S. Klessen, Control of star formation by supersonic turbulence. Rev. Mod. Phys. 76, 125–194 (2004)

    ADS  Google Scholar 

  • M.N. Machida, K. Doi, The formation of Population III stars in gas accretion stage: effects of magnetic fields. Mon. Not. R. Astron. Soc. 435, 3283–3305 (2013)

    ADS  Google Scholar 

  • M.N. Machida, K. Omukai, T. Matsumoto, et al., The first jets in the Universe: protostellar jets from the first stars. Astrophys. J. Lett. 647, 1–4 (2006)

    ADS  Google Scholar 

  • M.N. Machida, T. Matsumoto, S.-i. Inutsuka, Magnetohydrodynamics of Population III star formation. Astrophys. J. 685, 690–704 (2008)

    ADS  Google Scholar 

  • P. Madau, Cosmic reionization after Planck and before JWST: an analytic approach. Astrophys. J. 851, 50 (2017)

    ADS  Google Scholar 

  • P. Madau, F. Haardt, Cosmic reionization after Planck: could quasars do it all? Astrophys. J. Lett. 813, 8 (2015)

    ADS  Google Scholar 

  • P. Madau, F. Haardt, M.J. Rees, Radiative transfer in a clumpy universe. III. The nature of cosmological ionizing sources. Astrophys. J. 514, 648–659 (1999)

    ADS  Google Scholar 

  • A. Maeder, Physics, Formation and Evolution of Rotating Stars (Springer, Berlin, 2009)

    Google Scholar 

  • A. Maeder, G. Meynet, Stellar evolution with rotation. VI. The Eddington and Omega-limits, the rotational mass loss for OB and LBV stars. Astron. Astrophys. 361, 159–166 (2000)

    ADS  Google Scholar 

  • U. Maio, S. Khochfar, J.L. Johnson, et al., The interplay between chemical and mechanical feedback from the first generation of stars. Mon. Not. R. Astron. Soc. 414, 1145–1157 (2011b)

    ADS  Google Scholar 

  • U. Maio, L.V.E. Koopmans, B. Ciardi, The impact of primordial supersonic flows on early structure formation, reionization and the lowest-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 412, 40–44 (2011a)

    ADS  Google Scholar 

  • L. Mayer, S. Bonoli, The route to massive black hole formation via merger-driven direct collapse: a review. Rep. Prog. Phys. 82(1), 016901 (2019)

    ADS  Google Scholar 

  • L. Mayer, S. Kazantzidis, A. Escala, et al., Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers. Nature 466, 1082–1084 (2010)

    ADS  Google Scholar 

  • L. Mayer, D. Fiacconi, S. Bonoli, et al., Direct formation of supermassive black holes in metal enriched gas at the heart of high-redshift galaxy mergers. Astrophys. J. 810, 51 (2015)

    ADS  Google Scholar 

  • I.D. McGreer, A. Mesinger, V. D’Odorico, Model-independent evidence in favour of an end to reionization by \(z\approx 6\). Mon. Not. R. Astron. Soc. 447, 499–505 (2015)

    ADS  Google Scholar 

  • C.F. McKee, E.C. Ostriker, Theory of star formation. Annu. Rev. Astron. Astrophys. 45, 565–687 (2007)

    ADS  Google Scholar 

  • C.F. McKee, J.C. Tan, The formation of the first stars. II. Radiative feedback processes and implications for the initial mass function. Astrophys. J. 681, 771–797 (2008)

    ADS  Google Scholar 

  • M. McQuinn, R.M. O’Leary, The impact of the supersonic baryon-dark matter velocity difference on the \(z \sim 20\ 21\) cm background. Astrophys. J. 760, 3 (2012)

    ADS  Google Scholar 

  • M.V. Medvedev, L.O. Silva, M. Fiore, et al., Generation of magnetic fields in cosmological shocks. J. Korean Astron. Soc. 37, 533–541 (2004)

    ADS  Google Scholar 

  • J. Miralda-Escudé, M. Haehnelt, M.J. Rees, Reionization of the inhomogeneous universe. Astrophys. J. 530, 1–16 (2000)

    ADS  Google Scholar 

  • P.J. Montero, H.-T. Janka, E. Müller, Relativistic collapse and explosion of rotating supermassive stars with thermonuclear effects. Astrophys. J. 749, 37 (2012)

    ADS  Google Scholar 

  • S. Naoz, N. Yoshida, N.Y. Gnedin, Simulations of early baryonic structure formation with stream velocity. I. Halo abundance. Astrophys. J. 747, 128 (2012)

    ADS  Google Scholar 

  • S. Naoz, N. Yoshida, N.Y. Gnedin, Simulations of early baryonic structure formation with stream velocity. II. The gas fraction. Astrophys. J. 763, 27 (2013)

    ADS  Google Scholar 

  • S. Neo, S. Miyaji, K. Nomoto, et al., Effect of rapid mass accretion onto the main-sequence stars. Publ. Astron. Soc. Jpn. 29, 249–262 (1977)

    ADS  Google Scholar 

  • K.C.B. New, S.L. Shapiro, Evolution of differentially rotating supermassive stars to the onset of bar instability. Astrophys. J. 548, 439–446 (2001)

    ADS  Google Scholar 

  • P.A. Oesch, R.J. Bouwens, G.D. Illingworth, et al., The Dearth of \(z\sim10\) Galaxies in all HST Legacy Fields – the Rapid Evolution of the Galaxy Population in the First 500 Myr. ArXiv e-prints (2017)

  • R.M. O’Leary, M. McQuinn, The formation of the first cosmic structures and the physics of the \(z \sim 20\) universe. Astrophys. J. 760, 4 (2012)

    ADS  Google Scholar 

  • K. Omukai, Primordial star formation under far-ultraviolet radiation. Astrophys. J. 546, 635–651 (2001)

    ADS  Google Scholar 

  • K. Omukai, F. Palla, Formation of the first stars by accretion. Astrophys. J. 589, 677–687 (2003)

    ADS  Google Scholar 

  • J. Oñorbe, J.F. Hennawi, Z. Lukić, et al., Constraining reionization with the \(z \sim 5\)-6 Ly\(\alpha\) forest power spectrum: the outlook after Planck. Astrophys. J. 847, 63 (2017)

    ADS  Google Scholar 

  • Y. Osaki, The pulsation and evolution of super-massive stars. Publ. Astron. Soc. Jpn. 18, 384 (1966)

    ADS  Google Scholar 

  • B.W. O’Shea, M.L. Norman, Population III star formation in a \(\varLambda \)CDM universe. I. The effect of formation redshift and environment on protostellar accretion rate. Astrophys. J. 654, 66–92 (2007)

    ADS  Google Scholar 

  • M. Ouchi, K. Shimasaku, H. Furusawa, et al., Statistics of 207 Ly\(\alpha \) emitters at a redshift near 7: constraints on reionization and galaxy formation models. Astrophys. J. 723, 869–894 (2010)

    ADS  Google Scholar 

  • F. Palla, S.W. Stahler, The evolution of intermediate-mass protostars. I—basic results. Astrophys. J. 375, 288–299 (1991)

    ADS  Google Scholar 

  • K.L. Pandey, S.K. Sethi, B. Ratra, Cosmological magnetic braking and the formation of high-redshift, super-massive black holes. ArXiv e-prints (2019)

  • M.V. Penston, Dynamics of self-gravitating gaseous spheres-III. Analytical results in the free-fall of isothermal cases. Mon. Not. R. Astron. Soc. 144, 425 (1969)

    ADS  Google Scholar 

  • T. Peters, M.-M. Mac Low, R. Banerjee, et al., Understanding spatial and spectral morphologies of ultracompact H II regions. Astrophys. J. 719, 831–843 (2010)

    ADS  Google Scholar 

  • T. Peters, R. Banerjee, R.S. Klessen, et al., The interplay of magnetic fields, fragmentation, and ionization feedback in high-mass star formation. Astrophys. J. 729, 72 (2011)

    ADS  Google Scholar 

  • T. Peters, D.R.G. Schleicher, R.J. Smith, et al., Low-metallicity star formation: relative impact of metals and magnetic fields. Mon. Not. R. Astron. Soc. 442, 3112–3126 (2014)

    ADS  Google Scholar 

  • R. Adam, N. Aghanim, et al. (Planck Collaboration), Planck intermediate results. XLVII. Planck constraints on reionization history. Astron. Astrophys. 596, 108 (2016b)

    Google Scholar 

  • P.A.R. Ade, N. Aghanim, et al. (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, 13 (2016a)

    Google Scholar 

  • Planck Collaboration, N. Aghanim, Y. Akrami, et al., Planck 2018 results. VI. Cosmological parameters. ArXiv e-prints (2018)

  • D. Rahner, E.W. Pellegrini, S.C.O. Glover, et al., Winds and radiation in unison: a new semi-analytic feedback model for cloud dissolution. Mon. Not. R. Astron. Soc. 470(4), 4453–4472 (2017)

    ADS  Google Scholar 

  • D. Rahner, E.W. Pellegrini, S.C.O. Glover, et al., WARPFIELD 2.0: feedback-regulated minimum star formation efficiencies of giant molecular clouds. Mon. Not. R. Astron. Soc. 483(2), 2547–2560 (2019)

    ADS  Google Scholar 

  • J.A. Regan, M.G. Haehnelt, The formation of compact massive self-gravitating discs in metal-free haloes with virial temperatures of ∼13000–30000 K. Mon. Not. R. Astron. Soc. 393, 858–871 (2009)

    ADS  Google Scholar 

  • J.A. Regan, E. Visbal, J.H. Wise, et al., Rapid formation of massive black holes in close proximity to embryonic protogalaxies. Nat. Astron. 1, 0075 (2017)

    Google Scholar 

  • J.A. Regan, T.P. Downes, M. Volonteri, et al., Super-Eddington accretion and feedback from the first massive seed black holes. Mon. Not. R. Astron. Soc. 486(3), 3892–3906 (2019)

    ADS  Google Scholar 

  • C. Reisswig, C.D. Ott, E. Abdikamalov, et al., Formation and coalescence of cosmological supermassive-black-hole binaries in supermassive-star collapse. Phys. Rev. Lett. 111(15), 151101 (2013)

    ADS  Google Scholar 

  • E. Ripamonti, F. Iocco, A. Ferrara, et al., First star formation with dark matter annihilation. Mon. Not. R. Astron. Soc. 406, 2605–2615 (2010)

    ADS  Google Scholar 

  • T. Rivinius, T. Szeifert, L. Barrera, et al., Magnetic field detection in the B2Vn star HR 7355. Mon. Not. R. Astron. Soc. 405, 46–50 (2010)

    ADS  Google Scholar 

  • B.E. Robertson, R.S. Ellis, J.S. Dunlop, et al., Early star-forming galaxies and the reionization of the Universe. Nature 468, 49–55 (2010)

    ADS  Google Scholar 

  • B.E. Robertson, R.S. Ellis, S.R. Furlanetto, et al., Cosmic reionization and early star-forming galaxies: a joint analysis of new constraints from Planck and the Hubble Space Telescope. Astrophys. J. Lett. 802, 19 (2015)

    ADS  Google Scholar 

  • A.L. Rosen, M.R. Krumholz, C.F. McKee, et al., An unstable truth: how massive stars get their mass. Mon. Not. R. Astron. Soc. 463, 2553–2573 (2016)

    ADS  Google Scholar 

  • A. Sadowski, R. Narayan, R. Penna, et al., Energy, momentum and mass outflows and feedback from thick accretion discs around rotating black holes. Mon. Not. R. Astron. Soc. 436, 3856–3874 (2013)

    ADS  Google Scholar 

  • M. Saijo, The collapse of differentially rotating supermassive stars: conformally flat simulations. Astrophys. J. 615, 866–879 (2004)

    ADS  Google Scholar 

  • M. Saijo, T.W. Baumgarte, S.L. Shapiro, et al., Collapse of a rotating supermassive star to a supermassive black hole: post-Newtonian simulations. Astrophys. J. 569, 349–361 (2002)

    ADS  Google Scholar 

  • D. Schaerer, On the properties of massive Population III stars and metal-free stellar populations. Astron. Astrophys. 382, 28–42 (2002)

    ADS  Google Scholar 

  • A.T.P. Schauer, D.J. Whalen, S.C.O. Glover, et al., Lyman-Werner UV escape fractions from primordial haloes. Mon. Not. R. Astron. Soc. (2015)

  • A.T.P. Schauer, B. Agarwal, S.C.O. Glover, et al., Lyman-Werner escape fractions from the first galaxies. Mon. Not. R. Astron. Soc. 467, 2288–2300 (2017a)

    ADS  Google Scholar 

  • A.T.P. Schauer, J. Regan, S.C.O. Glover, et al., The formation of direct collapse black holes under the influence of streaming velocities. Mon. Not. R. Astron. Soc. 471, 4878–4884 (2017b)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, G.W. Hammett, et al., A model of nonlinear evolution and saturation of the turbulent MHD dynamo. New J. Phys. 4, 84 (2002)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, S.F. Taylor, et al., Saturated state of the nonlinear small-scale dynamo. Phys. Rev. Lett. 92(8), 084504 (2004)

    ADS  Google Scholar 

  • M.A. Schenker, R.S. Ellis, N.P. Konidaris, et al., Line-emitting galaxies beyond a redshift of 7: an improved method for estimating the evolving neutrality of the intergalactic medium. Astrophys. J. 795, 20 (2014)

    ADS  Google Scholar 

  • D.R.G. Schleicher, D. Galli, S.C.O. Glover, et al., The influence of magnetic fields on the thermodynamics of primordial star formation. Astrophys. J. 703, 1096–1106 (2009)

    ADS  Google Scholar 

  • D.R.G. Schleicher, R. Banerjee, S. Sur, et al., Small-scale dynamo action during the formation of the first stars and galaxies. I. The ideal MHD limit. Astron. Astrophys. 522, 115 (2010)

    MATH  Google Scholar 

  • R. Schlickeiser, P.K. Shukla, Cosmological magnetic field generation by the Weibel instability. Astrophys. J. Lett. 599, 57–60 (2003)

    ADS  Google Scholar 

  • J. Schober, D. Schleicher, C. Federrath, et al., Magnetic field amplification by small-scale dynamo action: dependence on turbulence models and Reynolds and Prandtl numbers. Phys. Rev. E 85(2), 026303 (2012a)

    ADS  Google Scholar 

  • J. Schober, D. Schleicher, C. Federrath, et al., The small-scale dynamo and non-ideal magnetohydrodynamics in primordial star formation. Astrophys. J. 754, 99 (2012b)

    ADS  Google Scholar 

  • J. Schober, D.R.G. Schleicher, C. Federrath, et al., Saturation of the turbulent dynamo. Phys. Rev. E 92(2), 023010 (2015)

    ADS  Google Scholar 

  • J. Schroeder, A. Mesinger, Z. Haiman, Evidence of Gunn-Peterson damping wings in high-\(z\) quasar spectra: strengthening the case for incomplete reionization at \(z \sim 6\)-7. Mon. Not. R. Astron. Soc. 428, 3058–3071 (2013)

    ADS  Google Scholar 

  • N.I. Shakura, R.A. Sunyaev, Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

  • M. Shibata, S.L. Shapiro, Collapse of a rotating supermassive star to a supermassive black hole: fully relativistic simulations. Astrophys. J. Lett. 572, 39–43 (2002)

    ADS  Google Scholar 

  • M. Shibata, Y. Sekiguchi, H. Uchida, et al., Gravitational waves from supermassive stars collapsing to a supermassive black hole. Phys. Rev. D 94(2), 021501 (2016b)

    ADS  Google Scholar 

  • M. Shibata, H. Uchida, Y.-i. Sekiguchi, Stability of rigidly rotating supermassive stars against gravitational collapse. Astrophys. J. 818, 157 (2016a)

    ADS  Google Scholar 

  • I. Shlosman, Galactic bars in cosmological context. Mem. Soc. Astron. Ital. Suppl. 18, 175 (2011)

    ADS  Google Scholar 

  • F.H. Shu, Self-similar collapse of isothermal spheres and star formation. Astrophys. J. 214, 488–497 (1977)

    ADS  Google Scholar 

  • G. Sigl, A.V. Olinto, K. Jedamzik, Primordial magnetic fields from cosmological first order phase transitions. Phys. Rev. D 55, 4582–4590 (1997)

    ADS  Google Scholar 

  • J. Silk, The cosmic microwave background radiation, in Implications for galaxy formation, ed. by E.W. Kolb, M.S. Turner, D. Lindley, et al. (University of Chicago Press, Chicago, 1986), pp. 143–158

    Google Scholar 

  • R. Smit, R.J. Bouwens, I. Labbé, et al., Evidence for ubiquitous high-equivalent-width nebular emission in \(z \sim 7\) galaxies: toward a clean measurement of the specific star-formation rate using a sample of bright, magnified galaxies. Astrophys. J. 784, 58 (2014)

    ADS  Google Scholar 

  • R.J. Smith, S.C.O. Glover, P.C. Clark, et al., The effects of accretion luminosity upon fragmentation in the early universe. Mon. Not. R. Astron. Soc. 414, 3633–3644 (2011)

    ADS  Google Scholar 

  • R.J. Smith, T. Hosokawa, K. Omukai, et al., Variable accretion rates and fluffy first stars. Mon. Not. R. Astron. Soc. 424, 457–463 (2012)

    ADS  Google Scholar 

  • L. Spitzer, Physical Processes in the Interstellar Medium (Wiley-Inter science, New York, 1978)

    Google Scholar 

  • D. Spolyar, K. Freese, P. Gondolo, Dark matter and the first stars: a new phase of stellar evolution. Phys. Rev. Lett. 100(5), 051101 (2008)

    ADS  Google Scholar 

  • A. Stacy, V. Bromm, Constraining the statistics of Population III binaries. Mon. Not. R. Astron. Soc. 433, 1094–1107 (2013)

    ADS  Google Scholar 

  • A. Stacy, V. Bromm, A. Loeb, Effect of streaming motion of baryons relative to dark matter on the formation of the first stars. Astrophys. J. Lett. 730, 1 (2011)

    ADS  Google Scholar 

  • A. Stacy, T.H. Greif, V. Bromm, The first stars: mass growth under protostellar feedback. Mon. Not. R. Astron. Soc. 422, 290–309 (2012)

    ADS  Google Scholar 

  • A. Stacy, A.H. Pawlik, V. Bromm, et al., The mutual interaction between Population III stars and self-annihilating dark matter. Mon. Not. R. Astron. Soc. 441, 822–836 (2014)

    ADS  Google Scholar 

  • A. Stacy, V. Bromm, A.T. Lee, Building up the Population III initial mass function from cosmological initial conditions. Mon. Not. R. Astron. Soc. 462, 1307–1328 (2016)

    ADS  Google Scholar 

  • S.W. Stahler, Deuterium and the stellar birthline. Astrophys. J. 332, 804–825 (1988)

    ADS  Google Scholar 

  • S.W. Stahler, F.H. Shu, R.E. Taam, The evolution of protostars. I—global formulation and results. Astrophys. J. 241, 637–654 (1980)

    ADS  Google Scholar 

  • S.W. Stahler, F. Palla, E.E. Salpeter, Primordial stellar evolution—the protostar phase. Astrophys. J. 302, 590–605 (1986)

    ADS  Google Scholar 

  • E.R. Stanway, J.J. Eldridge, G.D. Becker, Stellar population effects on the inferred photon density at reionization. Mon. Not. R. Astron. Soc. 456, 485–499 (2016)

    ADS  Google Scholar 

  • K. Subramanian, Can the turbulent galactic dynamo generate large-scale magnetic fields? Mon. Not. R. Astron. Soc. 294, 718 (1998)

    ADS  Google Scholar 

  • K. Sugimura, T. Hosokawa, H. Yajima, et al., Stunted accretion growth of black holes by combined effect of the flow angular momentum and radiation feedback. Mon. Not. R. Astron. Soc. 478(3), 3961–3975 (2018)

    ADS  Google Scholar 

  • K. Sugimura, T. Matsumoto, T. Hosokawa, et al., The Birth of a Massive First-Star Binary (2020). arXiv:2002.00012

  • L. Sun, V. Paschalidis, M. Ruiz, et al., Magnetorotational collapse of supermassive stars: black hole formation, gravitational waves, and jets. Phys. Rev. D 96(4), 043006 (2017)

    ADS  Google Scholar 

  • L. Sun, M. Ruiz, S.L. Shapiro, Simulating the magnetorotational collapse of supermassive stars: incorporating gas pressure perturbations and different rotation profiles. Phys. Rev. D 98(10), 103008 (2018)

    ADS  Google Scholar 

  • R.A. Sunyaev, Y.B. Zel’dovich, Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3–19 (1970)

    ADS  Google Scholar 

  • S. Sur, D.R.G. Schleicher, R. Banerjee, et al., The generation of strong magnetic fields during the formation of the first stars. Astrophys. J. Lett. 721, 134–138 (2010)

    ADS  Google Scholar 

  • S. Sur, C. Federrath, D.R.G. Schleicher, et al., Magnetic field amplification during gravitational collapse—influence of turbulence, rotation and gravitational compression. Mon. Not. R. Astron. Soc. 423, 3148–3162 (2012)

    ADS  Google Scholar 

  • H. Susa, The mass of the first stars. Astrophys. J. 773, 185 (2013)

    ADS  Google Scholar 

  • H. Susa, K. Hasegawa, N. Tominaga, The mass spectrum of the first stars. Astrophys. J. 792, 32 (2014)

    ADS  Google Scholar 

  • S.Z. Takahashi, K. Omukai, Primordial protostars accreting beyond the \(\varOmega \)\(\varGamma \)-limit: radiation effect around the star-disc boundary. Mon. Not. R. Astron. Soc. 472, 532–541 (2017)

    ADS  Google Scholar 

  • E. Takeo, K. Inayoshi, K. Ohsuga, et al., Rapid growth of black holes accompanied with hot or warm outflows exposed to anisotropic super-Eddington radiation. Mon. Not. R. Astron. Soc. 476, 673–682 (2018)

    ADS  Google Scholar 

  • J.C. Tan, C.F. McKee, The formation of the first stars. I. Mass infall rates, accretion disk structure, and protostellar evolution. Astrophys. J. 603, 383–400 (2004)

    ADS  Google Scholar 

  • A. Toomre, On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964)

    ADS  Google Scholar 

  • R.H.D. Townsend, S.P. Owocki, D. Groote, The rigidly rotating magnetosphere of \(\sigma \) Orionis E. Astrophys. J. Lett. 630, 81–84 (2005)

    ADS  Google Scholar 

  • D. Tseliakhovich, C. Hirata, Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82(8), 083520 (2010)

    ADS  Google Scholar 

  • M.J. Turk, T. Abel, B. O’Shea, The formation of Population III binaries from cosmological initial conditions. Science 325, 601 (2009)

    ADS  Google Scholar 

  • M.J. Turk, B.D. Smith, J.S. Oishi, et al., yt: A multi-code analysis toolkit for astrophysical simulation data. Astrophys. J. Suppl. Ser. 192, 9 (2011)

    ADS  Google Scholar 

  • M.J. Turk, J.S. Oishi, T. Abel, et al., Magnetic fields in Population III star formation. Astrophys. J. 745, 154 (2012)

    ADS  Google Scholar 

  • H. Uchida, M. Shibata, T. Yoshida, et al., Gravitational collapse of rotating supermassive stars including nuclear burning effects. Phys. Rev. D 96(8), 083016 (2017)

    ADS  Google Scholar 

  • H. Umeda, T. Hosokawa, K. Omukai, et al., The final fates of accreting supermassive stars. Astrophys. J. Lett. 830, 34 (2016)

    ADS  Google Scholar 

  • W. Unno, Physical state and stability of super-massive objects. Publ. Astron. Soc. Jpn. 23, 123 (1971)

    ADS  Google Scholar 

  • E. Visbal, R. Barkana, A. Fialkov, et al., The signature of the first stars in atomic hydrogen at redshift 20. Nature 487, 70–73 (2012)

    ADS  Google Scholar 

  • M. Volonteri, G. Lodato, P. Natarajan, The evolution of massive black hole seeds. Mon. Not. R. Astron. Soc. 383, 1079–1088 (2008)

    ADS  Google Scholar 

  • H. von Zeipel, The radiative equilibrium of a rotating system of gaseous masses. Mon. Not. R. Astron. Soc. 84, 665–683 (1924)

    ADS  Google Scholar 

  • M. Walther, J. Oñorbe, J.F. Hennawi, et al., New constraints on IGM thermal evolution from the Ly\(\alpha \) forest power spectrum. Astrophys. J. 872(1), 13 (2019)

    ADS  Google Scholar 

  • D. Whalen, T. Abel, M.L. Norman, Radiation hydrodynamic evolution of primordial H II regions. Astrophys. J. 610, 14–22 (2004)

    ADS  Google Scholar 

  • A. Whitworth, D. Summers, Self-similar condensation of spherically symmetric self-gravitating isothermal gas clouds. Mon. Not. R. Astron. Soc. 214, 1–25 (1985)

    ADS  MATH  Google Scholar 

  • L.M. Widrow, D. Ryu, D.R.G. Schleicher, et al., The first magnetic fields. Space Sci. Rev. 166, 37–70 (2012)

    ADS  Google Scholar 

  • J.H. Wise, M.J. Turk, T. Abel, Resolving the formation of protogalaxies. II. Central gravitational collapse. Astrophys. J. 682, 745–757 (2008)

    ADS  Google Scholar 

  • J.H. Wise, T. Abel, M.J. Turk, et al., The birth of a galaxy—II. The role of radiation pressure. Mon. Not. R. Astron. Soc. 427, 311–326 (2012a)

    ADS  Google Scholar 

  • J.H. Wise, M.J. Turk, M.L. Norman, et al., The birth of a galaxy: primordial metal enrichment and stellar populations. Astrophys. J. 745, 50 (2012b)

    ADS  Google Scholar 

  • J.H. Wise, J.A. Regan, B.W. O’Shea, et al., Formation of massive black holes in rapidly growing pre-galactic gas clouds. ArXiv e-prints (2019)

  • K.M.J. Wollenberg, S.C.O. Glover, P.C. Clark, et al., Formation sites of Population III star formation: the effects of different levels of rotation and turbulence on the fragmentation behaviour of primordial gas. Mon. Not. R. Astron. Soc. (2020). https://doi.org/10.1093/mnras/staa289

    Article  Google Scholar 

  • T.E. Woods, A. Heger, D.J. Whalen, et al., On the maximum mass of accreting primordial supermassive stars. Astrophys. J. Lett. 842, 6 (2017)

    ADS  Google Scholar 

  • T.E. Woods, B. Agarwal, V. Bromm, et al., Titans of the early Universe: the Prato statement on the origin of the first supermassive black holes. Publ. Astron. Soc. Aust. 36, 027 (2019)

    ADS  Google Scholar 

  • X.-B. Wu, F. Wang, X. Fan, et al., An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015)

    ADS  Google Scholar 

  • S.-C. Yoon, F. Iocco, S. Akiyama, Evolution of the first stars with dark matter burning. Astrophys. J. Lett. 688, 1 (2008)

    ADS  Google Scholar 

  • H.W. Yorke, C. Sonnhalter, On the formation of massive stars. Astrophys. J. 569, 846–862 (2002)

    ADS  Google Scholar 

  • N. Yoshida, T. Abel, L. Hernquist, et al., Simulations of early structure formation: primordial gas clouds. Astrophys. J. 592, 645–663 (2003)

    ADS  Google Scholar 

  • N. Yoshida, K. Omukai, L. Hernquist, et al., Formation of primordial stars in a \(\varLambda \)CDM universe. Astrophys. J. 652, 6–25 (2006)

    ADS  Google Scholar 

  • N. Yoshida, S.P. Oh, T. Kitayama, et al., Early cosmological H II/He III regions and their impact on second-generation star formation. Astrophys. J. 663, 687–707 (2007)

    ADS  Google Scholar 

  • N. Yoshida, K. Omukai, L. Hernquist, Protostar formation in the early universe. Science 321, 669 (2008)

    ADS  Google Scholar 

  • E. Zackrisson, C. Binggeli, K. Finlator, et al., The spectral evolution of the first Galaxies. III. Simulated James Webb Space Telescope spectra of reionization-epoch galaxies with Lyman-continuum leakage. Astrophys. J. 836, 78 (2017)

    ADS  Google Scholar 

  • H. Zinnecker, H.W. Yorke, Toward understanding massive star formation. Annu. Rev. Astron. Astrophys. 45, 481–563 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank ISSI for the organisation of the conference at the origin of this review.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Star Formation

Edited by Andrei Bykov, Corinne Charbonnel, Patrick Hennebelle, Alexandre Marcowith, Georges Meynet, Maurizio Falanga and Rudolf von Steiger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haemmerlé, L., Mayer, L., Klessen, R.S. et al. Formation of the First Stars and Black Holes. Space Sci Rev 216, 48 (2020). https://doi.org/10.1007/s11214-020-00673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00673-y

Keywords

Navigation