Skip to main content
Log in

A consistency test of EFT power countings from residual cutoff dependence

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

I summarise a method to quantitatively assess the consistency of power-counting proposals in Effective Field Theories which are non-perturbative at leading order. It uses the fact that the Renormalisation Group evolution of an observable predicts the functional form of its residual cutoff dependence on the breakdown scale of an Effective Field Theory (EFT), on the low-momentum scales, and on the order of the calculation. Passing this test is a necessary but not sufficient consistency criterion for a suggested power counting whose exact nature is disputed. For example, in Chiral Effective Field Theory (\(\chi \hbox {EFT}\)) with more than one nucleon, a lack of universally accepted analytic solutions obfuscates the relation between convergence pattern and numerical results, and led to proposals which predict different numbers of Low Energy Coefficients (LECs) at the same chiral order, and at times even predicts a different ordering long-range contributions. The method may provide an independent check whether an observable is properly renormalised at a given order, and allows one to estimate both the breakdown scale and the momentum-dependent order-by-order convergence pattern of an EFT. Conversely, it may help identify those LECs (and long-range pieces) which produce renormalised observables at a given order. I also discuss its underlying assumptions and relation to the Wilsonian Renormalisation Group Equation; useful choices for observables and cutoffs; the momentum window in which the test likely provides best signals; its dependence on the values and forms of cutoffs as well as on the EFT parameters; the impact of fitting LECs to data in different or the same channel; and caveats as well as limitations. Since the test is designed to minimise the use of data, it allows one to quantitatively falsify if the EFT has been renormalised consistently. This complements other tests which quantify how an EFT compares to experiment. Its application in particular to the \({}^{3}\mathrm {P}_{0}\) and \({}^{3}\mathrm {P}_{2}\)\({}^{3}\mathrm {F}_{2}\) partial waves of \({\mathrm {NN}}\) scattering in \(\chi \hbox {EFT}\) may elucidate persistent power-counting issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The preciously few data underlying this work are available in full upon request from the author.]

Notes

  1. This corrects an error in Ref. [14] and leads to a more nuanced presentation from here on.

  2. Some claim that renormalisability requires that \({\mathcal {O}}\) has a unique limit as \(\varLambda \rightarrow \infty \).

  3. One could adhere to the philosophy that cutoffs and breakdown scales should be similar.

  4. Aside from the comments in the preceding two footnotes, I am a follower of the “democratic principle” that any cutoff is equally legitimate and valid, as long as .

References

  1. The Editors, Editorial: uncertainty estimates. Phys. Rev. A 83, 040001 (2011)

  2. Enhancing the interaction between nuclear experiment and theory through information and statistics, special issue. J. Phys. G 42(3) (2015)

  3. Further enhancing the interaction between nuclear experiment and theory through information and statistics (ISNET 2.0), special issue. J. Phys. G 46(10) (2019) (publication ongoing)

  4. G.P. Lepage, arxiv:nucl-th/9706029

  5. R. Landau, J. Páez, C. Bordeianu, A Survey of Computational Physics: Introductory Computational Science, chapter 2.3 (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  6. P.F. Bedaque, H.W. Grießhammer, G. Rupak, H.-W. Hammer, Nucl. Phys. A 714, 589 (2003). arxiv:nucl-th/0207034

    ADS  Google Scholar 

  7. H.W. Grießhammer, Nucl. Phys. A 744, 192 (2004). arxiv:nucl-th/0404073

    ADS  Google Scholar 

  8. H.W. Grießhammer, Introduction to Effective Field Theories (National Nuclear Physics Summer School, Washington DC, 2008). http://home.gwu.edu/hgrie/

  9. H.W. Grießhammer, Summary: systematising the \(NN\) system in chiral effective field theory, remarks at Nuclear Forces from Effective Field Theory (CEA/SPhN, Saclay, 2013)

  10. H.W. Grießhammer, Testing a power counting, remarks at Bound States and Resonances in Effective Field Theories and Lattice QCD Calculations, Benasque (2014)

  11. R.J. Furnstahl, D.R. Phillips, S. Wesolowski, J. Phys. G 42, 034028 (2015). arXiv:1407.0657 [nucl-th]

    ADS  Google Scholar 

  12. E. Epelbaum, H. Krebs, U.G. Meißner, Eur. Phys. J. A 51, 53 (2015). arXiv:1412.0142 [nucl-th]

    ADS  Google Scholar 

  13. L.Y. Dai, J. Haidenbauer, U.G. Meißner, JHEP 1707, 078 (2017). arXiv:1702.02065 [nucl-th]

    ADS  Google Scholar 

  14. H.W. Grießhammer, PoS CD 15, 104 (2016). arXiv:1511.00490 [nucl-th]

    Google Scholar 

  15. H.-W. Hammer, S. König, U. van Kolck, arXiv:1906.12122 [nucl-th]

  16. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984). [n.b. Acknowledgement]

    ADS  Google Scholar 

  17. H. Georgi, L. Randall, Nucl. Phys. B 276, 241 (1986)

    ADS  Google Scholar 

  18. S. Weinberg, Phys. Rev. Lett. 63, 2333 (1989)

    ADS  Google Scholar 

  19. H. Georgi, Phys. Lett. B 298, 187 (1993). arxiv:hep-ph/9207278

    ADS  Google Scholar 

  20. H.W. Grießhammer, Nucl. Phys. A 760, 110 (2005). arxiv:nucl-th/0502039

    ADS  Google Scholar 

  21. M. Beneke, V.A. Smirnov, Nucl. Phys. B 522, 321 (1998). arxiv:hep-ph/9711391

    ADS  Google Scholar 

  22. H.W. Grießhammer, Phys. Rev. D 58, 094027 (1998). arxiv:hep-ph/9712467

    ADS  Google Scholar 

  23. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998). arxiv:nucl-th/9801034

    ADS  Google Scholar 

  24. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998). arxiv:nucl-th/9802075

    ADS  Google Scholar 

  25. S. Fleming, T. Mehen, I.W. Stewart, Nucl. Phys. A 677, 313 (2000). arxiv:nucl-th/9911001

    ADS  Google Scholar 

  26. T. Barford, M.C. Birse, Phys. Rev. C 67, 064006 (2003). arXiv:hep-ph/0206146 [hep-ph]

    ADS  Google Scholar 

  27. P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339–396 (2002). arxiv:nucl-th/0203055

    ADS  Google Scholar 

  28. L. Platter, Few Body Syst. 46, 139-171 (2009). arXiv:0904.2227 [nucl-th]

  29. S.R. Beane, P.F. Bedaque, M.J. Savage, U. van Kolck, Nucl. Phys. A 700, 377 (2002). arxiv:nucl-th/0104030

    ADS  Google Scholar 

  30. A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005). arxiv:nucl-th/0506005

    ADS  Google Scholar 

  31. U. van Kolck, this volume

  32. E. Epelbaum, U.-G. Meissner, Few Body Syst. 54, 2175 (2013). arxiv:nucl-th/0609037

    ADS  Google Scholar 

  33. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    ADS  Google Scholar 

  34. M.C. Birse, Phys. Rev. C 74, 014003 (2006). arxiv:nucl-th/0507077

    ADS  Google Scholar 

  35. M.C. Birse, PoS CD 09, 078 (2009). arXiv:0909.4641 [nucl-th]

    Google Scholar 

  36. M.P. Valderrama, Phys. Rev. C 83, 024003 (2011). arXiv:0912.0699 [nucl-th]

    ADS  Google Scholar 

  37. M.P. Valderrama, Phys. Rev. C 84, 064002 (2011). arXiv:1108.0872 [nucl-th]

    ADS  Google Scholar 

  38. M. Pavon Valderrama, arXiv:1902.08172 [nucl-th]

  39. B. Long, C.J. Yang, Phys. Rev. C 85, 034002 (2012). arXiv:1111.3993 [nucl-th]

    ADS  Google Scholar 

  40. B. Long, C.J. Yang, Phys. Rev. C 86, 024001 (2012). arXiv:1202.4053 [nucl-th]

    ADS  Google Scholar 

  41. D.R. Phillips, PoS CD 12, 013 (2013). [arXiv:1302.5959 [nucl-th]]

    Google Scholar 

  42. U. van Kolck, Front. Phys. (in press). arXiv:2003.06721 [nucl-th]

  43. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 478, 629 (1996). arxiv:nucl-th/9605002

    ADS  Google Scholar 

  44. S.R. Beane, D.B. Kaplan, A. Vuorinen, Phys. Rev. C 80, 011001 (2009). arXiv:0812.3938 [nucl-th]

    ADS  Google Scholar 

  45. E. Epelbaum, J. Gegelia, Eur. Phys. J. A 41, 341 (2009). arXiv:0906.3822 [nucl-th]

    ADS  Google Scholar 

  46. M.P. Valderrama, Int. J. Mod. Phys. E 25, 1641007 (2016). arXiv:1604.01332 [nucl-th]

    ADS  Google Scholar 

  47. U. van Kolck, Tower of effective field theories: status and perspectives, workshop The tower of effective (field) theories and the emergence of nuclear phenomena (EFT and philosophy of science) at CEA/SPhN Saclay, 17 January (2017)

  48. G. ’t Hooft, NATO Sci. Ser. B 59, 135 (1980)

  49. William of Occam (or Ockham) is generally credited, but the exact reference is not fully resolved. A commonly mentioned text appears to be Quaestiones et decisiones in quattuor libros Sententiarum Petri Lombardi ed. Lugd. (1495), i, dist. 27, qu. 2, K

  50. A. Einstein, R.W. Clark, Einstein: The Life and Times, chap. 14 (William Morrow pub., 1973)

  51. Anonymous, priv. comm

  52. E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006). arxiv:cond-mat/0410417

    ADS  MathSciNet  Google Scholar 

  53. J. Schwinger, Hectographed Notes on Nuclear Physics (Harvard University, Cambridge, 1947)

    Google Scholar 

  54. G.F. Chew, M.L. Goldberger, Phys. Rev. 75, 1637 (1949)

    ADS  Google Scholar 

  55. F.C. Barker, R.E. Peierls, Phys. Rev. 75, 3122 (1949)

    Google Scholar 

  56. H.A. Bethe, Phys. Rev. 76, 38 (1949)

    ADS  Google Scholar 

  57. H.W. Grießhammer, M.R. Schindler, Eur. Phys. J. A 46, 73 (2010). arXiv:1007.0734 [nucl-th]

    ADS  Google Scholar 

  58. J. Vanasse, Phys. Rev. C 99, 054001 (2019). arXiv:1809.10740 [nucl-th]

    ADS  Google Scholar 

  59. H.W. Grießhammer, Nucl. Phys. A 760, 110 (2005). arxiv:nucl-th/0502039

    ADS  Google Scholar 

  60. L. Platter, D.R. Phillips, Few Body Syst. 40, 35 (2006). arxiv:cond-mat/0604255

    ADS  Google Scholar 

  61. C. Ji, D.R. Phillips, Few Body Syst. 54, 2317 (2013). arXiv:1212.1845 [nucl-th]

    ADS  Google Scholar 

  62. J. Vanasse, Phys. Rev. C 88, 044001 (2013). arXiv:1305.0283 [nucl-th]

    ADS  Google Scholar 

  63. H.W. Grießhammer, M.R. Schindler, R.P. Springer, Eur. Phys. J. A 48, 7 (2012). arXiv:1109.5667 [nucl-th]

    ADS  Google Scholar 

  64. R.J. Furnstahl, N. Klco, D.R. Phillips, S. Wesolowski, Phys. Rev. C 92, 024005 (2015). arXiv:1506.01343 [nucl-th]

    ADS  Google Scholar 

  65. A. Kievsky, M. Gattobigio, Few Body Syst. 57, 217 (2016). arXiv:1511.09184 [nucl-th]

    ADS  Google Scholar 

  66. S. König, H.W. Grießhammer, H.W. Hammer, U. van Kolck, Phys. Rev. Lett. 118(20), 202501 (2017). arXiv:1607.04623 [nucl-th]

    ADS  Google Scholar 

  67. S. König, J. Phys. G 44(6), 064007 (2017). arXiv:1609.03163 [nucl-th]

    ADS  Google Scholar 

  68. U. van Kolck, Few Body Syst. 58(3), 112 (2017)

    ADS  Google Scholar 

  69. A. Kievsky, M. Viviani, D. Logoteta, I. Bombaci, L. Girlanda, Phys. Rev. Lett. 121(7), 072701 (2018). arXiv:1806.02636 [nucl-th]

    ADS  Google Scholar 

  70. U. van Kolck, Nuovo Cim. C 42(2–3–3), 52 (2019)

    Google Scholar 

  71. S. König, arXiv:1910.12627 [nucl-th]

  72. S.R. Beane, M.J. Savage, Nucl. Phys. A 717, 91 (2003). arxiv:nucl-th/0208021

    ADS  Google Scholar 

  73. E. Epelbaum, U.G. Meißner, W. Glöckle, Nucl. Phys. A 714, 535 (2003). arxiv:nucl-th/0207089

    ADS  Google Scholar 

  74. F. Gabbiani, arxiv:nucl-th/0104088

  75. J.J. de Swart, C.P.F. Terheggen, V.G.J. Stoks, arxiv:nucl-th/9509032

  76. D.R. Phillips, G. Rupak, M.J. Savage, Phys. Lett. B 473, 209 (2000). arxiv:nucl-th/9908054

  77. J.V. Steele, R.J. Furnstahl, Nucl. Phys. A 637, 46 (1998). arxiv:nucl-th/9802069

  78. J.V. Steele, R.J. Furnstahl, Nucl. Phys. A 645, 439 (1999). arxiv:nucl-th/9808022

  79. D.B. Kaplan, J.V. Steele, Phys. Rev. C 60, 064002 (1999). arxiv:nucl-th/9905027

  80. M.C. Birse, Phys. Rev. C 76, 034002 (2007). arXiv:0706.0984 [nucl-th]

    ADS  Google Scholar 

  81. M.C. Birse, Eur. Phys. J. A 46, 231 (2010). arXiv:1007.0540 [nucl-th]

    ADS  Google Scholar 

  82. K.L. Ipson, K. Helmke, M.C. Birse, Phys. Rev. C 83, 017001 (2011). arXiv:1009.0686 [nucl-th]

    ADS  Google Scholar 

  83. C.-J. Yang, Eur. Phys. J. A 56, 96 (2020). arXiv:1905.12510 [nucl-th]

    ADS  Google Scholar 

  84. H. W. Grießhammer, Ch.-J. Yang, in preparation

Download references

Acknowledgements

I cordially thank the organisers of the workshop The Tower of Effective (Field) Theories and the Emergence of Nuclear Phenomena (EFT and Philosophy of Science) at CEA/SPhN Saclay in 2017 for making a teenager’s dream come true to discuss with Philosophers in France, and all participants for the profound insight they shared, as well as for enlightening and entertaining discussions. These notes grew out of the inspirational and intense discourses at the workshops Nuclear Forces from Effective Field Theory at CEA/SPhN Saclay in 2013, Bound States and Resonances in Effective Field Theories and Lattice QCD Calculations in Benasque (Spain) in 2014, Chiral Dynamics 2015 in Pisa (Italy), EMMI Rapid Reaction Task Force ER15-02: Systematic Treatment of the Coulomb Interaction in Few-Body Systems at Darmstadt (Germany) in 2016, and New Ideas in Constraining Nuclear Forces at the ECT* in Trento (Italy) in 2018. I am most grateful to all their organisers and participants. Since 2013, exchanges with M. C. Birse, B. Demissie, A. Ekström, E. Epelbaum, C. Forssen, R. J. Furnstahl, J. Holt, B. Long, M. Pavon Valderrama, D. R. Phillips, M. J. Savage, I. Tews, R. G. E. Timmermans, U. van Kolck and Ch.-J. Yang allowed me to develop these ideas into a sharper analysis tool. M. J. Birse, B. Demissie, E. Epelbaum, D. R. Phillips and Ch.-J. Yang suggested important improvements to this script. I am especially indebted to ceaseless insistence on clarity by many emerging researchers, and by both referees. Finally, my colleagues may forgive mistakes and omissions in referencing work and historical precedents, and graciously continue to point out necessary corrections. This work was supported in part by the US Department of Energy under contract DE-SC0015393, and by The George Washington University: by the Dean’s Research Chair programme and an Enhanced Faculty Travel Award of the Columbian College of Arts and Sciences; and by the Office of the Vice President for Research and the Dean of the Columbian College of Arts and Sciences; and was conducted in part in GW’s Campus in the Closet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald W. Grießhammer.

Additional information

Communicated by Thomas Duguet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grießhammer, H.W. A consistency test of EFT power countings from residual cutoff dependence. Eur. Phys. J. A 56, 118 (2020). https://doi.org/10.1140/epja/s10050-020-00129-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00129-5

Navigation