Skip to main content
Log in

Targeting Apoptosis in Acute Myeloid Leukemia: Current Status and Future Directions of BCL-2 Inhibition with Venetoclax and Beyond

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) is a disease of the hematopoietic system that remains a therapeutic challenge despite advances in our understanding of the underlying cancer biology over the past decade. Recent developments in molecular targeting have shown promising results in treating leukemia, paving the way for novel treatment strategies. The discovery of drugs that promote apoptosis in leukemic cells has translated to encouraging activity in clinical trials. B-cell lymphoma (BCL)-2 inhibition has been at the center of drug development efforts to target apoptosis in AML. Remarkable clinical success with venetoclax has revolutionized the ways we treat hematological malignancies. Several landmark trials have demonstrated the potent antitumor activity of venetoclax, and it is now frequently combined with traditional cytotoxic agents to treat AML. However, resistance to BCL-2 inhibition is emerging, and alternative strategies to address resistance mechanisms have become an important focus of research. A number of clinical trials are now underway to investigate a plurality of novel agents that were shown to overcome resistance to BCL-2 inhibition in preclinical models. Some of the most promising data come from studies on drugs that downregulate myeloid cell leukemia (MCL)-1, such as cyclin-dependent kinases (CDK) inhibitors. Furthermore, innovative approaches to target apoptosis via extrinsic pathways and p53 regulation have added new cytotoxic agents to the arsenal, including drugs that inhibit inhibitor of apoptosis protein (IAP) family proteins and murine double minute 2 (MDM2). This review provides a perspective on past and current treatment strategies harnessing various mechanisms of apoptosis to target AML and highlights some important promising treatment combinations in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52. https://doi.org/10.1056/NEJMra1406184.

    Article  CAS  PubMed  Google Scholar 

  2. Kell J. Considerations and challenges for patients with refractory and relapsed acute myeloid leukaemia. Leuk Res. 2016;47:149–60. https://doi.org/10.1016/j.leukres.2016.05.025.

    Article  PubMed  Google Scholar 

  3. Luskin MR, Lee J-W, Fernandez HF, Abdel-Wahab O, Bennett JM, Ketterling RP, et al. Benefit of high-dose daunorubicin in AML induction extends across cytogenetic and molecular groups. Blood. 2016;127(12):1551–8. https://doi.org/10.1182/blood-2015-07-657403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36(26):2684–92. https://doi.org/10.1200/JCO.2017.77.6112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. von dem Borne PA, de Wreede LC, Halkes CJ, Marijt WA, Falkenburg JH, Veelken H. Effectivity of a strategy in elderly AML patients to reach allogeneic stem cell transplantation using intensive chemotherapy: long-term survival is dependent on complete remission after first induction therapy. Leuk Res. 2016;46:45–50. https://doi.org/10.1016/j.leukres.2016.03.010.

    Article  Google Scholar 

  6. Bowman RL, Busque L, Levine RL. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell. 2018;22(2):157–70. https://doi.org/10.1016/j.stem.2018.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–64. https://doi.org/10.1056/NEJMoa1614359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–98. https://doi.org/10.1056/NEJMoa1716984.

    Article  CAS  PubMed  Google Scholar 

  9. Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld J, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705–12. https://doi.org/10.1182/blood-2014-06-582809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with %3e30% blasts. Blood. 2015;126(3):291–9. https://doi.org/10.1182/blood-2015-01-621664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DiNardo CD, Pratz KW, Letai A, Jonas BA, Wei AH, Thirman M, et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study. Lancet Oncol. 2018;19(2):216–28. https://doi.org/10.1016/s1470-2045(18)30010-x.

    Article  CAS  PubMed  Google Scholar 

  12. Welch JS, Petti AA, Miller CA, Fronick CC, O'Laughlin M, Fulton RS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–36. https://doi.org/10.1056/NEJMoa1605949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lubbert M, Ruter BH, Claus R, Schmoor C, Schmid M, Germing U, et al. A multicenter phase II trial of decitabine as first-line treatment for older patients with acute myeloid leukemia judged unfit for induction chemotherapy. Haematologica. 2012;97(3):393–401. https://doi.org/10.3324/haematol.2011.048231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20(10):2429–40. https://doi.org/10.1200/jco.2002.04.117.

    Article  CAS  PubMed  Google Scholar 

  15. Adams JM, Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol. 2007;19(5):488–96. https://doi.org/10.1016/j.coi.2007.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leibowitz B, Yu J. Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol Ther. 2010;9(6):417–22. https://doi.org/10.4161/cbt.9.6.11392.

    Article  CAS  PubMed  Google Scholar 

  17. Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther. 2005;4(2):147–71. https://doi.org/10.4161/cbt.4.2.1508.

    Article  Google Scholar 

  18. Obexer P, Ausserlechner MJ. X-linked inhibitor of apoptosis protein—a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol. 2014;4:197. https://doi.org/10.3389/fonc.2014.00197.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mello SS, Attardi LD. Deciphering p53 signaling in tumor suppression. Curr Opin Cell Biol. 2018;51:65–72. https://doi.org/10.1016/j.ceb.2017.11.005.

    Article  CAS  PubMed  Google Scholar 

  20. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170(6):1062–78. https://doi.org/10.1016/j.cell.2017.08.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood. 1993;81(11):3091–6.

    Article  CAS  PubMed  Google Scholar 

  22. Moon JH, Sohn SK, Lee M-H, Jang JH, Kim K, Jung CW, et al. BCL2 gene polymorphism could predict the treatment outcomes in acute myeloid leukemia patients. Leuk Res. 2010;34(2):166–72. https://doi.org/10.1016/j.leukres.2009.05.009.

    Article  CAS  PubMed  Google Scholar 

  23. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435(7042):677–81. https://doi.org/10.1038/nature03579.

    Article  CAS  PubMed  Google Scholar 

  24. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68(9):3421–8. https://doi.org/10.1158/0008-5472.Can-07-5836.

    Article  CAS  PubMed  Google Scholar 

  25. Schimmer AD, Raza A, Carter TH, Claxton D, Erba H, DeAngelo DJ, et al. A multicenter phase I/II study of obatoclax mesylate administered as a 3- or 24-hour infusion in older patients with previously untreated acute myeloid leukemia. PLoS ONE. 2014;9(10):e108694. https://doi.org/10.1371/journal.pone.0108694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rudin CM, Hann CL, Garon EB, Ribeiro de Oliveira M, Bonomi PD, Camidge DR, et al. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012;18(11):3163–9. https://doi.org/10.1158/1078-0432.CCR-11-3090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bogenberger JM, Delman D, Hansen N, Valdez R, Fauble V, Mesa RA, et al. Ex vivo activity of BCL-2 family inhibitors ABT-199 and ABT-737 combined with 5-azacytidine in myeloid malignancies. Leuk Lymphoma. 2015;56(1):226–9. https://doi.org/10.3109/10428194.2014.910657.

    Article  PubMed  Google Scholar 

  28. Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernández-Luna JL. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med. 1998;338(9):564–71. https://doi.org/10.1056/NEJM199802263380902.

    Article  CAS  PubMed  Google Scholar 

  29. Zeuner A, Pedini F, Francescangeli F, Signore M, Girelli G, Tafuri A, et al. Activity of the BH3 mimetic ABT-737 on polycythemia vera erythroid precursor cells. Blood. 2009;113(7):1522–5. https://doi.org/10.1182/blood-2008-03-143321.

    Article  CAS  PubMed  Google Scholar 

  30. Hantel A, Wynne J, Lacayo N, Khaw SL, Rubnitz J, Mullighan C, et al. Safety and efficacy of the BCL inhibitors venetoclax and navitoclax in combination with chemotherapy in patients with relapsed/refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18:S184–S185185. https://doi.org/10.1016/j.clml.2018.07.016.

    Article  Google Scholar 

  31. Lacayo NJ, Pullarkat VA, Stock W, Jabbour E, Bajel A, Rubnitz J, et al. Safety and efficacy of venetoclax in combination with navitoclax in adult and pediatric relapsed/refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Blood. 2019;134(Supplement_1):285. https://doi.org/10.1182/blood-2019-126977.

    Article  Google Scholar 

  32. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8. https://doi.org/10.1038/nm.3048.

    Article  CAS  PubMed  Google Scholar 

  33. Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4(3):362–75. https://doi.org/10.1158/2159-8290.Cd-13-0609.

    Article  CAS  PubMed  Google Scholar 

  34. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6(10):1106–17. https://doi.org/10.1158/2159-8290.Cd-16-0313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tibes R BJ, Choudhary A, Monzon I, Chow D, Kiefer J, Azorsa O. RNA-based identification of novel sensitizers to 5-azacytidine in myeloid leukemias. In: Congress of the European Hematology Association, Berlin, Germany, June 4–7, 2009. Haematologica. 2009;94(supplement 2):1.

  36. Bogenberger J, Shi C-X, Hagelstrom T, Gonzales I, Choudhary A, Tiedemann R, et al. Abstract LB-128: synthetic lethal RNAi screening identifies inhibition of Bcl-2 family members as sensitizers to 5-azacytidine in myeloid cells. Cancer Res. 2010;70(8 Supplement):LB-128. https://doi.org/10.1158/1538-7445.AM10-LB-128.

    Article  Google Scholar 

  37. Bogenberger JM, Kornblau SM, Pierceall WE, Lena R, Chow D, Shi CX, et al. BCL-2 family proteins as 5-azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia. 2014;28(8):1657–65. https://doi.org/10.1038/leu.2014.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsao T, Shi Y, Kornblau S, Lu H, Konoplev S, Antony A, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol. 2012;91(12):1861–70. https://doi.org/10.1007/s00277-012-1537-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pollye DA, Dinardo CD, Thirman MJ, Letai A, Wei AH, Jonas BA, et al. Results of a phase 1b study of venetoclax plus decitabine or azacitidine in untreated acute myeloid leukemia patients ≥ 65 years ineligible for standard induction therapy. J Clin Oncol. 2016;34(15_suppl):7009. https://doi.org/10.1200/JCO.2016.34.15_suppl.7009.

    Article  Google Scholar 

  40. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17. https://doi.org/10.1182/blood-2018-08-868752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maurillo L, Venditti A, Spagnoli A, Gaidano G, Ferrero D, Oliva E, et al. Azacitidine for the treatment of patients with acute myeloid leukemia: report of 82 patients enrolled in an Italian Compassionate Program. Cancer. 2012;118(4):1014–22. https://doi.org/10.1002/cncr.26354.

    Article  CAS  PubMed  Google Scholar 

  42. Bhatnagar B, Duong VH, Gourdin TS, Tidwell ML, Chen C, Ning Y, et al. Ten-day decitabine as initial therapy for newly diagnosed patients with acute myeloid leukemia unfit for intensive chemotherapy. Leuk Lymphoma. 2014;55(7):1533–7. https://doi.org/10.3109/10428194.2013.856425.

    Article  CAS  PubMed  Google Scholar 

  43. Ritchie EK, Feldman EJ, Christos PJ, Rohan SD, Lagassa CB, Ippoliti C, et al. Decitabine in patients with newly diagnosed and relapsed acute myeloid leukemia. Leuk Lymphoma. 2013;54(9):2003–7. https://doi.org/10.3109/10428194.2012.762093.

    Article  CAS  PubMed  Google Scholar 

  44. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24(12):1859–66. https://doi.org/10.1038/s41591-018-0233-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin TL, Strickland SA, Fiedler W, Walter RB, Hou J-Z, Roboz GJ, et al. Phase Ib/2 study of venetoclax with low-dose cytarabine in treatment-naive patients age ≥ 65 with acute myelogenous leukemia. J Clin Oncol. 2016;34(15_suppl):7007. https://doi.org/10.1200/JCO.2016.34.15_suppl.7007.

    Article  Google Scholar 

  46. Wei AH, Strickland SA Jr, Hou JZ, Fiedler W, Lin TL, Walter RB, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 2019;37(15):1277–84. https://doi.org/10.1200/jco.18.01600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maiti A, DiNardo CD, Cortes JE, Borthakur G, Pemmaraju N, Benton CB, et al. Interim analysis of phase II study of venetoclax with 10-day decitabine (DEC10-VEN) in acute myeloid leukemia and myelodysplastic syndrome. Blood. 2018;132(Supplement 1):286. https://doi.org/10.1182/blood-2018-99-113749.

    Article  Google Scholar 

  48. Konopleva M, Milella M, Ruvolo P, Watts JC, Ricciardi MR, Korchin B, et al. MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia. 2012;26(4):778–87. https://doi.org/10.1038/leu.2011.287.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Q, Han L, Shi C, Pan R, Ma MCJ, Ryan J, et al. Upregulation of MAPK/MCL-1 maintaining mitochondrial oxidative phosphorylation confers acquired resistance to BCL-2 inhibitor venetoclax in AML. Blood. 2016;128(22):101.

    Article  Google Scholar 

  50. Daver N, Pollyea DA, Yee KWL, Fenaux P, Brandwein JM, Vey N, et al. Preliminary results from a phase Ib study evaluating BCL-2 inhibitor venetoclax in combination with MEK inhibitor cobimetinib or MDM2 inhibitor idasanutlin in patients with relapsed or refractory (R/R) AML. Blood. 2017;130(Suppl 1):813.

    Google Scholar 

  51. Juin P, Geneste O, Gautier F, Depil S, Campone M. Decoding and unlocking the BCL-2 dependency of cancer cells. Nat Rev Cancer. 2013;13(7):455–65. https://doi.org/10.1038/nrc3538.

    Article  CAS  PubMed  Google Scholar 

  52. Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ, Gore SD, et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood. 1998;91(3):991–1000.

    Article  CAS  PubMed  Google Scholar 

  53. Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S, Iino T, Rocnik JL, Kikushige Y, et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood. 2009;114(24):5034–43. https://doi.org/10.1182/blood-2008-12-196055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Glaser SP, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD, et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 2012;26(2):120–5. https://doi.org/10.1101/gad.182980.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin KH, Winter PS, Xie A, Roth C, Martz CA, Stein EM, et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia. Sci Rep. 2016;6:27696. https://doi.org/10.1038/srep27696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Niu X, Zhao J, Ma J, Xie C, Edwards H, Wang G, et al. Binding of released Bim to Mcl-1 is a mechanism of intrinsic resistance to ABT-199 which can be overcome by combination with daunorubicin or cytarabine in AML cells. Clin Cancer Res. 2016;22(17):4440. https://doi.org/10.1158/1078-0432.CCR-15-3057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moujalled DM, Pomilio G, Ghiurau C, Ivey A, Salmon J, Rijal S, et al. Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia. Leukemia. 2019;33(4):905–17. https://doi.org/10.1038/s41375-018-0261-3.

    Article  CAS  PubMed  Google Scholar 

  58. Teh TC, Nguyen NY, Moujalled DM, Segal D, Pomilio G, Rijal S, et al. Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1. Leukemia. 2018;32(2):303–12. https://doi.org/10.1038/leu.2017.243.

    Article  CAS  PubMed  Google Scholar 

  59. Doi K, Liu Q, Gowda K, Barth BM, Claxton D, Amin S, et al. Maritoclax induces apoptosis in acute myeloid leukemia cells with elevated Mcl-1 expression. Cancer Biol Ther. 2014;15(8):1077–86. https://doi.org/10.4161/cbt.29186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Caenepeel SR, Belmontes B, Sun J, Coxon A, Moody G, Hughes PE. Abstract 2027: preclinical evaluation of AMG 176, a novel, potent and selective Mcl-1 inhibitor with robust anti-tumor activity in Mcl-1 dependent cancer models. Cancer Res. 2017;77(13 Supplement):2027. https://doi.org/10.1158/1538-7445.AM2017-2027.

    Article  Google Scholar 

  61. Hird AW, Secrist JP, Adam A, Belmonte MA, Gangl E, Gibbons F, et al. Abstract DDT01-02: AZD5991: a potent and selective macrocyclic inhibitor of Mcl-1 for treatment of hematologic cancers. Cancer Res. 2017;77(13 Supplement):DDT01–2. https://doi.org/10.1158/1538-7445.AM2017-DDT01-02.

    Article  Google Scholar 

  62. Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538(7626):477–82. https://doi.org/10.1038/nature19830.

    Article  CAS  PubMed  Google Scholar 

  63. Papatzimas JW, Gorobets E, Maity R, Muniyat MI, MacCallum JL, Neri P, et al. From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1). J Med Chem. 2019;62(11):5522–40. https://doi.org/10.1021/acs.jmedchem.9b00455.

    Article  CAS  PubMed  Google Scholar 

  64. Chen R, Keating MJ, Gandhi V, Plunkett W. Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood. 2005;106(7):2513–9. https://doi.org/10.1182/blood-2005-04-1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gojo I, Zhang B, Fenton RG. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin Cancer Res. 2002;8(11):3527–38.

    CAS  PubMed  Google Scholar 

  66. Kitada S, Zapata JM, Andreeff M, Reed JC. Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood. 2000;96(2):393–7.

    Article  CAS  PubMed  Google Scholar 

  67. Lee DJ, Zeidner JF. Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach. Expert Opin Investig Drugs. 2019;28(11):989–1001. https://doi.org/10.1080/13543784.2019.1678583.

    Article  CAS  PubMed  Google Scholar 

  68. Tibes R, Bogenberger JM. Transcriptional silencing of MCL-1 through cyclin-dependent kinase inhibition in acute myeloid leukemia. Front Oncol. 2019;9:1205.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zeidner JF, Foster MC, Blackford AL, Litzow MR, Morris LE, Strickland SA, et al. Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7+3) in newly diagnosed acute myeloid leukemia. Haematologica. 2015;100(9):1172–9. https://doi.org/10.3324/haematol.2015.125849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zeidner JF, Lin TL, Vigil CE, Dalovisio A, Wang ES, Levy MY, et al. Zella 201: a biomarker-guided phase II study of alvocidib followed by cytarabine and mitoxantrone in MCL-1 dependent relapsed/refractory acute myeloid leukemia (AML). Blood. 2018;132(Supplement 1):30. https://doi.org/10.1182/blood-2018-99-115018.

    Article  Google Scholar 

  71. Bogenberger J, Whatcott C, Hansen N, Delman D, Shi CX, Kim W, et al. Combined venetoclax and alvocidib in acute myeloid leukemia. Oncotarget. 2017;8(63):107206–222. https://doi.org/10.18632/oncotarget.22284.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kim W, Haws H, Peterson P, Whatcott CJ, Weitman S, Warner SL, et al. Abstract 5133: TP-1287, an oral prodrug of the cyclin-dependent kinase-9 inhibitor alvocidib. Cancer Res. 2017;77(13 Supplement):5133. https://doi.org/10.1158/1538-7445.AM2017-5133.

    Article  Google Scholar 

  73. Gojo I, Sadowska M, Walker A, Feldman EJ, Iyer SP, Baer MR, et al. Clinical and laboratory studies of the novel cyclin-dependent kinase inhibitor dinaciclib (SCH 727965) in acute leukemias. Cancer Chemother Pharmacol. 2013;72(4):897–908. https://doi.org/10.1007/s00280-013-2249-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Scholz A, Oellerich T, Hussain A, Lindner S, Luecking U, Walter AO, et al. Abstract 3022: BAY 1143572, a first-in-class, highly selective, potent and orally available inhibitor of PTEFb/CDK9 currently in phase I, shows convincing anti-tumor activity in preclinical models of acute myeloid leukemia (AML). Cancer Res. 2016;76(14 Supplement):3022. https://doi.org/10.1158/1538-7445.AM2016-3022.

    Article  Google Scholar 

  75. Lucking U, Scholz A, Lienau P, Siemeister G, Kosemund D, Bohlmann R, et al. Identification of atuveciclib (BAY 1143572), the first highly selective, clinical PTEFb/CDK9 inhibitor for the treatment of cancer. ChemMedChem. 2017;12(21):1776–933. https://doi.org/10.1002/cmdc.201700447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Olson CM, Jiang B, Erb MA, Liang Y, Doctor ZM, Zhang Z, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol. 2018;14(2):163–70. https://doi.org/10.1038/nchembio.2538.

    Article  CAS  PubMed  Google Scholar 

  77. Robb CM, Contreras JI, Kour S, Taylor MA, Abid M, Sonawane YA, et al. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem Commun. 2017;53(54):7577–80. https://doi.org/10.1039/c7cc03879h.

    Article  CAS  Google Scholar 

  78. Chen S, Dai Y, Pei XY, Myers J, Wang L, Kramer LB, et al. CDK inhibitors upregulate BH3-only proteins to sensitize human myeloma cells to BH3 mimetic therapies. Cancer Res. 2012;72(16):4225–377. https://doi.org/10.1158/0008-5472.Can-12-1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Höring E, Ott G, Bayha C, Markus K, Voehringer MC, van Der Kuip H, et al. Dual targeting of NOXA/MCL-1 synergistically induces cell death in mantle cell lymphoma (MCL) cells. Blood. 2015;126(23):2757. https://doi.org/10.1182/blood.V126.23.2757.2757.

    Article  Google Scholar 

  80. Nguyen T, Parker R, Zhang Y, Hawkins E, Kmieciak M, Craun W, et al. Homoharringtonine interacts synergistically with bortezomib in NHL cells through MCL-1 and NOXA-dependent mechanisms. BMC Cancer. 2018;18(1):1129. https://doi.org/10.1186/s12885-018-5018-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 1997;388(6639):300–4. https://doi.org/10.1038/40901.

    Article  CAS  PubMed  Google Scholar 

  82. Schimmer AD, Pedersen IM, Kitada S, Eksioglu-Demiralp E, Minden MD, Pinto R, et al. Functional blocks in caspase activation pathways are common in leukemia and predict patient response to induction chemotherapy. Cancer Res. 2003;63(6):1242–8.

    CAS  PubMed  Google Scholar 

  83. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 2000;6(5):1796–803.

    CAS  PubMed  Google Scholar 

  84. Lacasse EC, Kandimalla ER, Winocour P, Sullivan T, Agrawal S, Gillard JW, et al. Application of XIAP antisense to cancer and other proliferative disorders: development of AEG35156/GEM640. Ann N Y Acad Sci. 2005;1058:215–34. https://doi.org/10.1196/annals.1359.032.

    Article  CAS  PubMed  Google Scholar 

  85. Hu Y, Cherton-Horvat G, Dragowska V, Baird S, Korneluk RG, Durkin JP, et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res. 2003;9(7):2826–36.

    CAS  PubMed  Google Scholar 

  86. Shaw TJ, Lacasse EC, Durkin JP, Vanderhyden BC. Downregulation of XIAP expression in ovarian cancer cells induces cell death in vitro and in vivo. Int J Cancer. 2008;122(6):1430–4. https://doi.org/10.1002/ijc.23278.

    Article  CAS  PubMed  Google Scholar 

  87. Hu Y, Cherton-Horvat G, Dragowska V, Baird S, Korneluk RG, Durkin JP, et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells. Clin Cancer Res. 2003;9(7):2826.

    CAS  PubMed  Google Scholar 

  88. Schimmer AD, Estey EH, Borthakur G, Carter BZ, Schiller GJ, Tallman MS, et al. Phase I/II trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with relapsed or primary refractory acute myeloid leukemia. J Clin Oncol. 2009;27(28):4741–6. https://doi.org/10.1200/JCO.2009.21.8172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schimmer AD, Herr W, Hanel M, Borthakur G, Frankel A, Horst HA, et al. Addition of AEG35156 XIAP antisense oligonucleotide in reinduction chemotherapy does not improve remission rates in patients with primary refractory acute myeloid leukemia in a randomized phase II study. Clin Lymphoma Myeloma Leuk. 2011;11(5):433–8. https://doi.org/10.1016/j.clml.2011.03.033.

    Article  CAS  PubMed  Google Scholar 

  90. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell. 2003;11(2):519–27. https://doi.org/10.1016/s1097-2765(03)00054-6.

    Article  CAS  PubMed  Google Scholar 

  91. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell. 2007;131(4):682–93. https://doi.org/10.1016/j.cell.2007.10.037.

    Article  CAS  PubMed  Google Scholar 

  92. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell. 2007;131(4):669–81. https://doi.org/10.1016/j.cell.2007.10.030.

    Article  CAS  PubMed  Google Scholar 

  93. Carter BZ, Mak PY, Mak DH, Shi Y, Qiu Y, Bogenberger JM, et al. Synergistic targeting of AML stem/progenitor cells with IAP antagonist birinapant and demethylating agents. J Natl Cancer Inst. 2014. https://doi.org/10.1093/jnci/djt440.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Frey NV, Luger S, Mangan J, Zebrowski A, Loren AW, Minderman H, et al. A phase I study using single agent birinapant in patients with relapsed myelodysplastic syndrome and acute myelogenous leukemia. Blood. 2014;124(21):3758. https://doi.org/10.1182/blood.V124.21.3758.3758.

    Article  Google Scholar 

  95. Borthakur G, Foran JM, Wang ES, Rakkar A, Hager S, Frey NV, et al. A phase 1b/2a study of birinapant in combination with 5-azacitadine in patients with myelodysplastic syndrome who are naïve, refractory to or have relapsed on 5-azacitadine: a peliminary analysis. Blood. 2014;124(21):3263. https://doi.org/10.1182/blood.V124.21.3263.3263.

    Article  Google Scholar 

  96. Borthakur G, Foran JM, Wang ES, Rakkar A, Minderman H, Burns J, et al. A phase 1b study of birinapant in combination with 5-azacitadine in patients with myelodysplastic syndrome who are naïve, refractory or have relapsed to 5-azacitadine. Blood. 2015;126(23):93. https://doi.org/10.1182/blood.V126.23.93.93.

    Article  Google Scholar 

  97. Donnellan WB, Diez-Campelo M, Heuser M, Ritchie EK, Skolnik J, Font P, et al. A phase 2 study of azacitidine (5-AZA) with or without birinapant in subjects with higher risk myelodysplastic syndrome (MDS) or chronic myelomonocytic leukemia (CMML). J Clin Oncol. 2016;34(15_suppl):7060. https://doi.org/10.1200/JCO.2016.34.15_suppl.7060.

    Article  Google Scholar 

  98. Carter BZ, Milella M, Altieri DC, Andreeff M. Cytokine-regulated expression of survivin in myeloid leukemia. Blood. 2001;97(9):2784–90. https://doi.org/10.1182/blood.v97.9.2784.

    Article  CAS  PubMed  Google Scholar 

  99. Carter BZ, Wang RY, Schober WD, Milella M, Chism D, Andreeff M. Targeting survivin expression induces cell proliferation defect and subsequent cell death involving mitochondrial pathway in myeloid leukemic cells. Cell Cycle. 2003;2(5):488–93.

    Article  CAS  PubMed  Google Scholar 

  100. Erba HP, Sayar H, Juckett M, Lahn M, Andre V, Callies S, et al. Safety and pharmacokinetics of the antisense oligonucleotide (ASO) LY2181308 as a single-agent or in combination with idarubicin and cytarabine in patients with refractory or relapsed acute myeloid leukemia (AML). Investig New Drugs. 2013;31(4):1023–34. https://doi.org/10.1007/s10637-013-9935-x.

    Article  CAS  Google Scholar 

  101. Khurana A, Shafer DA. MDM2 antagonists as a novel treatment option for acute myeloid leukemia: perspectives on the therapeutic potential of idasanutlin (RG7388). OncoTargets Ther. 2019;12:2903–10. https://doi.org/10.2147/OTT.S172315.

    Article  CAS  Google Scholar 

  102. Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006;6(12):909–23. https://doi.org/10.1038/nrc2012.

    Article  CAS  PubMed  Google Scholar 

  103. Oren M. Regulation of the p53 tumor suppressor protein. J Biol Chem. 1999;274(51):36031–4. https://doi.org/10.1074/jbc.274.51.36031.

    Article  CAS  PubMed  Google Scholar 

  104. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303(5659):844–8. https://doi.org/10.1126/science.1092472.

    Article  CAS  PubMed  Google Scholar 

  105. Pishas KI, Al-Ejeh F, Zinonos I, Kumar R, Evdokiou A, Brown MP, et al. Nutlin-3a is a potential therapeutic for ewing sarcoma. Clin Cancer Res. 2011;17(3):494–504. https://doi.org/10.1158/1078-0432.Ccr-10-1587.

    Article  CAS  PubMed  Google Scholar 

  106. Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H, et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA. 2006;103(6):1888–933. https://doi.org/10.1073/pnas.0507493103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, et al. Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett. 2013;4(5):466–9. https://doi.org/10.1021/ml4000657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Long J, Parkin B, Ouillette P, Bixby D, Shedden K, Erba H, et al. Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia. Blood. 2010;116(1):71–80. https://doi.org/10.1182/blood-2010-01-261628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weisberg E, Halilovic E, Cooke VG, Nonami A, Ren T, Sanda T, et al. Inhibition of wild-type p53-expressing AML by the novel small molecule HDM2 inhibitor CGM097. Mol Cancer Ther. 2015;14(10):2249. https://doi.org/10.1158/1535-7163.MCT-15-0429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang W, Konopleva M, Burks JK, Dywer KC, Schober WD, Yang JY, et al. Blockade of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and murine double minute synergistically induces apoptosis in acute myeloid leukemia via BH3-only proteins Puma and Bim. Cancer Res. 2010;70(6):2424–34. https://doi.org/10.1158/0008-5472.Can-09-0878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Andreeff M, Kelly KR, Yee K, Assouline S, Strair R, Popplewell L, et al. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clin Cancer Res. 2016;22(4):868. https://doi.org/10.1158/1078-0432.CCR-15-0481.

    Article  CAS  PubMed  Google Scholar 

  112. Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem. 2013;56(14):5979–83. https://doi.org/10.1021/jm400487c.

    Article  CAS  PubMed  Google Scholar 

  113. Yee K, Martinelli G, Vey N, Dickinson MJ, Seiter K, Assouline S, et al. Phase 1/1b study of RG7388, a potent MDM2 antagonist, in acute myelogenous leukemia (AML) patients (Pts). Blood. 2014;124(21):116. https://doi.org/10.1182/blood.V124.21.116.116.

    Article  Google Scholar 

  114. Pan R, Ruvolo V, Mu H, Leverson JD, Nichols G, Reed JC, et al. Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy. Cancer Cell. 2017;32(6):748–60.e6. https://doi.org/10.1016/j.ccell.2017.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Daver NG, Pollyea DA, Garcia JS, Jonas BA, Yee KWL, Fenaux P, et al. Safety, efficacy, pharmacokinetic (PK) and biomarker analyses of BCL2 inhibitor venetoclax (Ven) plus MDM2 inhibitor idasanutlin (idasa) in patients (pts) with relapsed or refractory (R/R) AML: a phase Ib, non-randomized, open-label study. Blood. 2018;132(Supplement 1):767. https://doi.org/10.1182/blood-2018-99-116013.

    Article  Google Scholar 

  116. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–22. https://doi.org/10.1056/NEJMoa1513257.

    Article  CAS  PubMed  Google Scholar 

  117. Moreau P, Chanan-Khan A, Roberts AW, Agarwal AB, Facon T, Kumar S, et al. Promising efficacy and acceptable safety of venetoclax plus bortezomib and dexamethasone in relapsed/refractory MM. Blood. 2017;130(22):2392–400. https://doi.org/10.1182/blood-2017-06-788323.

    Article  CAS  PubMed  Google Scholar 

  118. Davids MS, Roberts AW, Seymour JF, Pagel JM, Kahl BS, Wierda WG, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma. J Clin Oncol. 2017;35(8):826–33. https://doi.org/10.1200/jco.2016.70.4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kaefer A, Yang J, Noertersheuser P, Mensing S, Humerickhouse R, Awni W, et al. Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of navitoclax (ABT-263) induced thrombocytopenia. Cancer Chemother Pharmacol. 2014;74(3):593–602. https://doi.org/10.1007/s00280-014-2530-9.

    Article  CAS  PubMed  Google Scholar 

  120. Tibes R, Kornblau S, Pierceall W, Lena R, Qiu YH, Cardone M, et al. BH3 profiling as predictor of 5-azacytidine and decitabine clinical responses. Blood. 2013;122(21):603. https://doi.org/10.1182/blood.V122.21.603.603.

    Article  Google Scholar 

  121. Smith BD, Warner SL, Whatcott C, Siddiqui-Jain A, Bahr B, Dettman E, et al. An alvocidib-containing regimen is highly effective in AML patients through a mechanism dependent on MCL1 expression and function. J Clin Oncol. 2015;33(15_suppl):7062. https://doi.org/10.1200/jco.2015.33.15_suppl.7062.

    Article  Google Scholar 

  122. Brumatti G, Ma C, Lalaoui N, Nguyen NY, Navarro M, Tanzer MC, et al. The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Sci Transl Med. 2016;8(339):339ra69. https://doi.org/10.1126/scitranslmed.aad3099.

    Article  CAS  PubMed  Google Scholar 

  123. Lalaoui N, Hanggi K, Brumatti G, Chau D, Nguyen NN, Vasilikos L, et al. Targeting p38 or MK2 enhances the anti-leukemic activity of smac-mimetics. Cancer Cell. 2016;30(3):499–500. https://doi.org/10.1016/j.ccell.2016.08.009.

    Article  CAS  PubMed  Google Scholar 

  124. Tibes R, McDonagh KT, Lekakis L, Bogenberger JM, Kim S, Frazer N, et al. Phase I study of the novel Cdc2/CDK1 and AKT inhibitor terameprocol in patients with advanced leukemias. Investig New Drugs. 2015;33(2):389–96. https://doi.org/10.1007/s10637-014-0198-y.

    Article  CAS  Google Scholar 

  125. Ravandi F, Gojo I, Patnaik MM, Minden MD, Kantarjian H, Johnson-Levonas AO, et al. A phase I trial of the human double minute 2 inhibitor (MK-8242) in patients with refractory/recurrent acute myelogenous leukemia (AML). Leuk Res. 2016;48:92–100. https://doi.org/10.1016/j.leukres.2016.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Raoul Tibes.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of Interest

Jun H. Choi has no conflicts of interest that might be relevant to the contents of this manuscript. Raoul Tibes and James M Bogenberger received writing support from Ashfield Healthcare Communications for an unrelated review article and have no conflicts of interest that are directly relevant to the content of this article. Raoul Tibes has received honorarium and travel support from Abbvie. James M Bogenberger has research funding pending from Tolero Pharmaceuticals for the preclinical investigation of alvocidib/TP-1287 in solid tumor models. Raoul Tibes and James M Bogenberger have published work on alvocidib in AML that is being used by pharmaceutical companies designing clinical trials; neither have received any personal or research compensation for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.H., Bogenberger, J.M. & Tibes, R. Targeting Apoptosis in Acute Myeloid Leukemia: Current Status and Future Directions of BCL-2 Inhibition with Venetoclax and Beyond. Targ Oncol 15, 147–162 (2020). https://doi.org/10.1007/s11523-020-00711-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-020-00711-3

Navigation