Skip to main content
Log in

A conceptual DFT analysis of the plausible mechanism of some pericyclic reactions

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Out of several pericyclic reactions, Diels-Alder (DA) reaction is one of the most widely used synthetic processes. In the present work, several models and methodologies have been used to determine and to analyze the plausible mechanism of some representative DA cycloaddition reactions. A comparison between the dual descriptor and the bond reactivity indices corresponding to the natural bond orbital of the reagents is included, which provides a complete description of the plausible reaction mechanism. In the next step, two very recent models are used to determine the local electronic density transfer and redistribution between the reactants involved. The description of the local electronic density transfer has been made in two stages; first, the variation in the net charge on the atoms is obtained, and then, the electronic density transfer between the natural bond orbitals is calculated. The values obtained using the two models are correlated with the experimental rate constants of the reactions. Finally, the natural bond orbitals are obtained at several steps along the reaction path and the variation in their partial occupation is compared with the corresponding electron density transfer among these orbitals. Furthermore, frontier molecular orbital (FMO) approach has been employed to understand the more feasible way of interaction between the DA pair. Relative electrophilicity descriptors like net electrophilicity (∆ω±), net reactivity index (NRI, Δ\( {\omega}_R^{\pm } \)), and electrophilicity difference (∆ω) between DA pairs have also been employed to describe the studied reaction mechanisms especially whether they follow non-polar-concerted/polar-stepwise pathway along with their classification in terms of normal or inverse electron demand. Furthermore, adaptive natural density partitioning method (AdNDP) and energy decomposition analyses (EDA) in conjunction with natural orbital for chemical valence (NOCV) have been made use of in order to analyze the actual bonding situation in the transition state (TS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Loncharich RJ, Brown FK, Houk K (1989) Transition structures of the Diels-Alder reaction of butadiene with acrolein. J Org Chem 54:1129–1134

    CAS  Google Scholar 

  2. Houk KN, Gonzalez J, Li Y (1995) Pericyclic reaction transition states: passions and punctilios, 1935-1995. Acc Chem Res 28:81–90

    CAS  Google Scholar 

  3. Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angew Chem Int Ed 8:781–853

    CAS  Google Scholar 

  4. Fukui K (1982) The role of frontier orbitals in chemical reactions (Nobel Lecture). Angew Chem Int Ed 21:801–809

    Google Scholar 

  5. Hartree D (1928) The wave mechanics of an atom with a non-coulomb central field. Part iii. Term values and intensities in series in optical spectra. In: Mathematical Proceedings of the Cambridge Philosophical Society: Cambridge University Press. 24: 426-437

  6. Hartree D (1929) The distribution of charge and current in an atom consisting of many electrons obeying Dirac’s equations, in: Mathematical Proceedings of the Cambridge Philosophical Society: Cambridge University Press, 25: 225–236

  7. Fock V (1930) Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z Phys 61:126–148

    Google Scholar 

  8. Parr RG and Yang W (1989) Density-functional theory of atoms and molecules: Oxford University Press, Oxford, New York

  9. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    CAS  Google Scholar 

  10. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980

    CAS  Google Scholar 

  11. March NH (1982) Electron density theory of atoms and molecules. J Phys Chem 86:2262–2267

    CAS  Google Scholar 

  12. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Google Scholar 

  13. Chattaraj PK, Fuentealba P, Gómez B, Contreras R (2000) Woodward−hoffmann rule in the light of the principles of maximum hardness and minimum polarizability: DFT and Ab initio SCF studies. J Am Chem Soc 122:348–351

    CAS  Google Scholar 

  14. Sablon N, de Proft F, Geerlings P (2009) Reformulating the Woodward-Hoffmann rules in a conceptual density functional theory context: the case of sigmatropic reactions. Croatica Chem Acta 82:157–164

    CAS  Google Scholar 

  15. De Proft F, Ayers PW, Fias S, Geerlings P (2006) Woodward-Hoffmann rules in density functional theory: initial hardness response. J Chem Phys 125:214101

    PubMed  Google Scholar 

  16. De Proft F, Chattaraj P, Ayers P, Torrent-Sucarrat M, Elango M, Subramanian V, Giri S, Geerlings P (2008) Initial hardness response and hardness profiles in the study of Woodward–Hoffmann rules for electrocyclizations. J Chem Theo Comput 4:595–602

    Google Scholar 

  17. Geerlings P, De Proft F (2008) Conceptual DFT: the chemical relevance of higher response functions. Phys Chem Chem Phys 10:3028–3042

    CAS  PubMed  Google Scholar 

  18. Morell C, Labet V, Grand A, Ayers PW, De Proft F, Geerlings P, Chermette H (2009) Characterization of the chemical behavior of the low excited states through a local chemical potential. J Chem Theor Comput 5:2274–2283

    CAS  Google Scholar 

  19. Jaque P, Correa JV, De Proft F, Toro-Labbe A, Geerlings P (2010) Regaining the Woodward–Hoffmann rules for chelotropic reactions via conceptual DFT. Canadian J Chem 88:858–865

    CAS  Google Scholar 

  20. Geerlings P, Ayers PW, Toro-Labbé A, Chattaraj PK, De Proft F (2012) The Woodward–Hoffmann rules reinterpreted by conceptual density functional theory. Acc Chem Res 45:683–695

    CAS  PubMed  Google Scholar 

  21. Correa JV, Jaque P, Geerlings P, Toro-Labbé A (2012) Electronic activity in chelotropic and cycloaddition reactions. Int J Quantum Chem 112:2142–2153

    CAS  Google Scholar 

  22. Sauer J, Lang D, Wiest H (1964) Eine Studie der Diels-Alder-Reaktion, II. Das Additionsvermögen cis-trans-isomerer Dienophile bei Dienadditionen (mit und ohne Aluminiumchlorid-Katalyse). Chem Ber 97:3208–3218

    CAS  Google Scholar 

  23. Wassermann A (1965) Diels-Alder reactions: organic background and physicochemical aspects. Elsevier

  24. Padwa A (1984) 1, 3-dipolar cycloaddition chemistry, vol 1. Wiley-interscience

  25. Ollis WD (1979) Comprehensive organic chemistry: the synthesis and reactions of organic compounds. Pergamon Press

  26. Diels O, Alder K (1928) Syntheses in the hydroaromatic series. I. Addition of “diene” hydrocarbons. Justus Liebigs Ann Chem 460:98–122

    CAS  Google Scholar 

  27. Ess DH, Jones GO, Houk K (2006) Conceptual, qualitative, and quantitative theories of 1, 3-dipolar and Diels–Alder cycloadditions used in synthesis. Adv Syn Cat 348:2337–2361

    CAS  Google Scholar 

  28. Morales-Bayuelo A, Sánchez-Márquez J, Jana G, Chattaraj PK (2018) Analyzing torquoselectivity in a series of unusual ring-opening reactions through bond reactivity indices and the adaptive natural density partitioning method. Int J Quantum Chem 118:e25778

    Google Scholar 

  29. Fujimoto H, Fukui K (1972) Molecular orbital theory of chemical reactions. In: Adv. Quantum Chem., vol 6. Elsevier, pp 177–201

  30. Eyring H (1935) The activated complex and the absolute rate of chemical reactions. Chem Rev 17:65–77

    CAS  Google Scholar 

  31. Laidler KJ, King MC (1983) Development of transition-state theory. J Phys Chem 87:2657–2664

    CAS  Google Scholar 

  32. Walsh R, Wells JM (1976) The kinetics of reversible Diels–Alder reactions in the gas phase. Part II. Cyclopentadiene and ethylene. J Chem Soc Perkin Trans 2:52–55

    Google Scholar 

  33. Pearson RG (1997) Chemical hardness. Wiley-VCH, Weinheim

    Google Scholar 

  34. Chattaraj PK, Parr RG (1993) Density functional theory of chemical hardness. In: Chemical Hardness. Springer, pp 11–25

  35. Parr RG, Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    CAS  Google Scholar 

  36. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    CAS  PubMed  Google Scholar 

  37. Chattaraj PK, Roy D (2007) Perennial review: update 1 of Chem. Rev. 106, 2065 (2006). Chem Rev 107

  38. Chattaraj PK, Giri S, Duley S (2011) Perennial review: update 2 of Chem. Rev.(2006), 106, 2065. Chem Rev 111

  39. Calais JL (1993) Density-functional theory of atoms and molecules. RG Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX+ 333 pp. Price£ 45.00. Int J Quantum Chem 47:101–101

    Google Scholar 

  40. Liu S-B (2009) Conceptual density functional theory and some recent developments. Acta Phys -Chim Sin 25:590–600

    CAS  Google Scholar 

  41. Geerlings P (1793) Proft FDe, Langenaeker W. Chem Rev 103:2003

    Google Scholar 

  42. Pearson R, Chattaraj PK (2008) The hard-soft acid-base principle. Chemtracts: Inorg Chem 21:1–7

    CAS  Google Scholar 

  43. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    CAS  Google Scholar 

  44. Chattaraj PK (2009) Chemical reactivity theory: a density functional view. CRC press

  45. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Google Scholar 

  46. Koopmans T (1933) Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1:104–113

    CAS  Google Scholar 

  47. Huang M, Maynard A, Turpin JA, Graham L, Janini GM, Covell DG, Rice WG (1998) Anti-HIV agents that selectively target retroviral nucleocapsid protein zinc fingers without affecting cellular zinc finger proteins. J Med Chem 41:1371–1381

    CAS  PubMed  Google Scholar 

  48. Gazquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111:1966–1970

    CAS  PubMed  Google Scholar 

  49. Chakraborty A, Das R, Giri S, Chattaraj PK (2011) Net reactivity index (Δω). J Phys Org Chem 24:854–864

    CAS  Google Scholar 

  50. Chattaraj PK, Chakraborty A, Giri S (2009) Net electrophilicity. J Phys Chem A 113:10068–10074

    CAS  PubMed  Google Scholar 

  51. Sánchez-Márquez J, García V, Zorrilla D, Fernández M (2019) New insights in conceptual DFT: new model for the calculation of local reactivity indices based on the Sanderson's principle. Int J Quantum Chem 119:e25844

    Google Scholar 

  52. Becke AD (1992) Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160

    CAS  Google Scholar 

  53. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    CAS  Google Scholar 

  54. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    CAS  Google Scholar 

  55. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R. Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian, Inc., Wallingford CT, 2009

  56. Sánchez-Márquez J, Zorrilla D, Sánchez-Coronilla A, Desireé M, Navas J, Fernández-Lorenzo C, Alcántara R, Martín-Calleja J (2014) Introducing “UCA-FUKUI” software: reactivity-index calculations. J Mol Model 20:2492

    PubMed  Google Scholar 

  57. Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207–5217

    CAS  PubMed  Google Scholar 

  58. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    PubMed  Google Scholar 

  59. Gao W, Feng H, Xuan X, Chen L (2012) A theoretical study of N–H··· π H-bond interaction of pyrrole: from clusters to the liquid. Mol Phys 110:2151–2161

    CAS  Google Scholar 

  60. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967

    Google Scholar 

  61. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    CAS  Google Scholar 

  62. Sanderson R (1951) An interpretation of bond lengths and a classification of bonds. Science 114:670–672

    CAS  PubMed  Google Scholar 

  63. Sanderson RT (1976) Chemical bonds in organic compounds. Sun and Sand Publishing Company

  64. Sanderson R (2012) Polar covalence. Elsevier

  65. Sánchez-Márquez J (2019) New advances in conceptual-DFT: an alternative way to calculate the Fukui function and dual descriptor. J Mol Model 25:123

    PubMed  Google Scholar 

  66. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    CAS  Google Scholar 

  67. Sánchez-Márquez J (2016) Introducing new reactivity descriptors:“bond reactivity indices.” Comparison of the new definitions and atomic reactivity indices. J Chem Phys 145:194105

    PubMed  Google Scholar 

  68. Foster RA, Willis MC (2013) Tandem inverse-electron-demand hetero-/retro-Diels–Alder reactions for aromatic nitrogen heterocycle synthesis. Chem Soc Rev 42:63–76

    CAS  PubMed  Google Scholar 

  69. Sauer J, Sustmann R (1980) Mechanistic aspects of Diels-Alder reactions: a critical survey. Angew Chem Int 19(10):779–807

    Google Scholar 

  70. Github source. https://zenodo.org/record/2648092#.XLwJdpnQhPY). Access Date: 17 Apr 2019

  71. Tkachenko NV, Boldyrev AI (2019) Chemical bonding analysis of excited states using the adaptive natural density partitioning method. Phys Chem Chem Phys 21:9590–9596

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PKC thanks the DST, New Delhi, for the J. C. Bose National Fellowship. AM thanks the GIBACUS (Universidad del Sinú, sectional Cartagena), and JS thanks the Departamento de Química-Física for the support of this investigation. GJ thanks IIT, Kharagpur for his fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Morales-Bayuelo or Pratim Kumar Chattaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2974 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Bayuelo, A., Sánchez-Márquez, J., Jana, G. et al. A conceptual DFT analysis of the plausible mechanism of some pericyclic reactions. Struct Chem 31, 1745–1756 (2020). https://doi.org/10.1007/s11224-020-01527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01527-7

Keywords

Navigation