Skip to main content
Log in

Overlooked types of layered molecular hydrates over the past decade

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The nets (H2O) of new topological types among the structures of organic hydrates included in the Cambridge Structural Database (CSD) during the past decade were investigated. The complexity of the new nets is distinctly higher than that of the most prevalent nets in organic hydrates. Topological descriptors of the new nets are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stahly GP (2007) Diversity in single- and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals. Cryst Growth Des 7:1007–1026

    Article  CAS  Google Scholar 

  2. Pudipeddi M, Serajuddin ATM (2005) Trends in solubility of polymorphs. J Pharm Sci 94:929–939

    Article  CAS  Google Scholar 

  3. Hulme AT, Price SL (2007) Toward the prediction of organic hydrate crystal structures. J Chem Theory Comput 3:1597–1608

    Article  CAS  Google Scholar 

  4. Boothroyd S, Kerridge A, Broo A, Buttar D, Anwar J (2018) Why do some molecules form hydrates or solvates? Cryst Growth Des 18:1903–1908

    Article  CAS  Google Scholar 

  5. Infantes L, Fábián L, Motherwell WDS (2007) Organic crystal hydrates: what are the important factors for formation. CrystEngComm 9:65–71

    Article  CAS  Google Scholar 

  6. Infantes L, Motherwell S (2002) Water clusters in organic molecular crystals. CrystEngComm 4:454–461

    Article  CAS  Google Scholar 

  7. Banaru AM, Slovokhotov YL (2015) Crystal hydrates of organic compounds. J Struct Chem 56:967–982

    Article  CAS  Google Scholar 

  8. Banaru AM, Banaru GA (2011) Cairo tiling and the topology of layered hydrates. Mosc Univ Chem Bull 66:159

    Article  Google Scholar 

  9. O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 41:1782–1789

    Article  Google Scholar 

  10. The Samara Topological Data Center. https://topcryst.com/. Accessed 01 Mar 2020

  11. Banaru A, Slovokhotov YL (2010) On the topology of layered motifs (H2O). CrystEngComm 12:1054–1056

    Article  CAS  Google Scholar 

  12. Banaru A (2011) On water nets L4(x)6(y). CrystEngComm 13:212–214

    Article  CAS  Google Scholar 

  13. Blatov VA (2009) Methods for topological analysis of atomic nets. J Struct Chem 50:160–167

    Article  Google Scholar 

  14. Rzepiński P, Nowosielska B, Cyrański MK, Boese R, Dobrzycki Ł (2019) Kosmotropic behavior of 3-pyrroline during crystalline hydrates formation. Cryst Growth Des 19:4721–4730

    Article  Google Scholar 

  15. Pirzadeh P, Beaudoin EN, Kusalik PG (2011) Structural evolution during water crystallization: insights from ring analysis. Chem Phys Lett 517:117–125

    Article  CAS  Google Scholar 

  16. Banaru AM, Banaru GA (2012) Proton redundancy in planar aqueous networks (H2O). Mosc Univ Chem Bull 67:5–7

    Article  Google Scholar 

  17. Blatov VA, Shevchenko AP, Proserpio DM (2014) Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des 14:3576–3586

    Article  CAS  Google Scholar 

  18. Delgado-Friedrichs O. http://www.gavrog.org. Accessed 01 Mar 2020

  19. Delgado-Friedrichs O, O’Keeffe M (2003) Identification of and symmetry computation for crystal nets. Acta Crystallogr Sect A 59:351–360

    Article  Google Scholar 

  20. Sunada T (2012) Lecture on topological crystallography. Japan J Math 39:1–39

    Article  Google Scholar 

  21. Blatov VA, O’Keeffe M, Proserpio DM (2010) Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology. CrystEngComm 12:44–48

    Article  CAS  Google Scholar 

  22. Krivovichev SV (2014) Which inorganic structures are the most complex? Angew Chemie Int Ed 53:654–661

    Article  CAS  Google Scholar 

  23. Schweighauser L, Bodoky I, Kessler SN, Häussinger D, Donsbach C, Wegner HA (2016) Bidentate Lewis acid catalyzed domino Diels–Alder reaction of phthalazine for the synthesis of bridged oligocyclic tetrahydronaphthalenes. Org Lett 18:1330–1333

    Article  CAS  Google Scholar 

  24. Behera N, Manivannan V (2016) Selective recognition of Zn2+ ion using 2,4-Bis(2-pyridyl)-5-(4-pyridyl)imidazole: spectra and molecular structure. ChemistrySelect 1:4016–4023

    Article  CAS  Google Scholar 

  25. Desplat V, Vincenzi M, Lucas R et al (2017) Synthesis and antiproliferative effect of ethyl 4-[4-(4-substituted piperidin-1-yl)]benzylpyrrolo[1,2-a] quinoxalinecarboxylate derivatives on human leukemia cells. ChemMedChem 12:940–953

    Article  CAS  Google Scholar 

  26. Beukemann A, Klee WE (1992) Minimal nets. Zeitschrift fur Krist New Cryst Struct 201:37–51

    Google Scholar 

  27. Fischer NV, Alam MS, Jum’h I, Stocker M, Fritsch N, Dremov V, Heinemann FW, Burzlaff N, Müller P (2011) Trans-1,2-Bis(N-methylimidazol-2-yl)ethylene: towards building blocks for 2D fabrics and MML-type 1D molecular strands. Chem – A Eur J 17:9293–9297

    Article  CAS  Google Scholar 

  28. Cai H, Guo Y, Li J, Zhao Y (2009) Novel L4(6)6(6) water layers trapped in an organic host framework 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one. J Mol Struct 918:77–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. V.A. Blatov (Samara Centre for Theoretical Materials Science) for the provided collection of 2D nets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Banaru.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banaru, A., Banaru, D. Overlooked types of layered molecular hydrates over the past decade. Struct Chem 31, 1449–1455 (2020). https://doi.org/10.1007/s11224-020-01534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01534-8

Keywords

Navigation