Skip to main content
Log in

Physical Characteristics of Umbral Dots Derived from a High-Resolution Observations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The aim of this study is to revisit the physical parameters of umbral dots (UDs) with the latest high-resolution observations and contribute to the scientific understanding of their formation and evolution. In this study, we applied a particle tracking algorithm for detecting UDs in NOAA AR 12384 observed on June 14, 2015 by the Goode Solar Telescope (GST). We analyzed average position distributions, location dependencies, and general properties of the detected total 2892 UDs separately during their life time and the periodic behavior of ten selected long-lived UDs. We found: i) the brightest, largest, fastest and most elliptic UDs tend to be located at the umbra–penumbra boundary while their lifetime does not display any meaningful location dependency, ii) average dynamic velocity of all detected UDs is about twice (0.76 km s−1) of the previously reported average values, iii) obtained trajectories from the longest-lived 354 UDs show that they have generally inward motion, iv) chosen 10 long-lived UDs generally have similar periodic behavior showing 8.5 – 32, 3.5 – 4.1, 1.5 – 1.9, and 1.1 – 1.3 minutes periodicities, v) generally, detected UDs have an elliptical shape with the averaged eccentricity of 0.29, with a 0.11 standard deviation, vi) larger UDs tend to be more elliptic and more dynamic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. http://www.physics.emory.edu/faculty/weeks//idl/tracking.html.

References

  • Abramenko, V., Yurchyshyn, V., Goode, P., Kilcik, A.: 2010, Statistical distribution of size and lifetime of bright points observed with the New Solar Telescope. Astrophys. J. Lett.725(1), L101. DOI .

    Article  ADS  Google Scholar 

  • Beckers, J.M., Schröter, E.H.: 1968, The intensity, velocity and magnetic structure of a sunspot region. II: Some properties of umbral dots. Solar Phys.4(3), 303. DOI .

    Article  ADS  Google Scholar 

  • Berdyugina, S.V., Solanki, S.K., Frutiger, C.: 2003, The molecular Zeeman effect and diagnostics of solar and stellar magnetic fields II. Synthetic Stokes profiles in the Zeeman regime. Astron. Astrophys.412, 513. DOI .

    Article  ADS  Google Scholar 

  • Choudhuri, A.R.: 1986, The dynamics of magnetically trapped fluids. I. Implications for umbral dots and penumbral grains. Astrophys. J.302, 809. DOI .

    Article  ADS  Google Scholar 

  • Crocker, J.C., Grier, D.G.: 1996, Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci.179(1), 298. DOI .

    Article  ADS  Google Scholar 

  • Crocker, J.C., Hoffman, B.D.: 2007, Multiple-Particle Tracking and Two-Point Microrheology in Cells, Elsevier, Philadelphia. 978-0-12-370500-6.

    Google Scholar 

  • Ebadi, H., Abbasvand, V., Pourjavadi, H.: 2017, The study of umbral dots in sunspots based on SOT/Hinode observations. Astron. Nachr.338(6), 662. DOI .

    Article  ADS  Google Scholar 

  • Feng, S., Zhao, Y., Yang, Y., Ji, K., Deng, H., Wang, F.: 2015, Identifying and tracking of peripheral and central umbral dots. Solar Phys.290(4), 1119. DOI .

    Article  ADS  Google Scholar 

  • Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P.: 2002, Advanced spectral methods for climatic time series. Rev. Geophys.40, 3.1. DOI .

    Article  Google Scholar 

  • Grossmann-Doerth, U., Schmidt, W., Schroeter, E.H.: 1986, Size and temperature of umbral dots. Astron. Astrophys.156, 347.

    ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V.B., Rempel, M., Abramenko, V., Kitai, R., Goode, P.R., Cao, W., Watanabe, H.: 2012, Properties of umbral dots as measured from the New Solar Telescope data and MHD simulations. Astrophys. J.745(2), 163. DOI .

    Article  ADS  Google Scholar 

  • Louis, R.E., Mathew, S.K., Bellot Rubio, L.R., Ichimoto, K., Ravindra, B., Raja Bayanna, A.: 2012, Properties of umbral dots from stray light corrected Hinode filtergrams. Astrophys. J.752(2), 109. DOI .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1979, Sunspots and the physics of magnetic flux tubes. IX. Umbral dots and longitudinal overstability. Astrophys. J.234, 333. DOI .

    Article  ADS  Google Scholar 

  • Rempel, M., Schüssler, M., Knölker, M.: 2009, Radiative magnetohydrodynamic simulation of sunspot structure. Astrophys. J.691(1), 640. DOI .

    Article  ADS  Google Scholar 

  • Riethmüller, T.L., Solanki, S.K., Zakharov, V., Gandorfer, A.: 2008, Brightness, distribution, and evolution of sunspot umbral dots. Astron. Astrophys.492(1), 233. DOI .

    Article  ADS  Google Scholar 

  • Rimmele, T., Marino, J.: 2006, The Evershed flow: Flow geometry and its temporal evolution. Astrophys. J.646(1), 593. DOI .

    Article  ADS  Google Scholar 

  • Schüssler, M., Vögler, A.: 2006, Magnetoconvection in a sunspot umbra. Astrophys. J. Lett.641(1), L73. DOI .

    Article  ADS  Google Scholar 

  • Shumko, S., Gorceix, N., Choi, S., Kellerer, A., Cao, W., Goode, P.R., Abramenko, V., Richards, K., Rimmele, T.R., Marino, J.: 2014, AO-308: The high-order adaptive optics system at Big Bear Solar Observatory. In: Proceedings of the SPIE. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series9148, 914835. DOI .

    Chapter  Google Scholar 

  • Sobotka, M., Brandt, P.N., Simon, G.W.: 1997, Fine structure in sunspots. II. Intensity variations and proper motions of umbral dots. Astron. Astrophys.328, 689.

    ADS  Google Scholar 

  • Sobotka, M., Hanslmeier, A.: 2005, Photometry of umbral dots. Astron. Astrophys.442(1), 323. DOI .

    Article  ADS  Google Scholar 

  • Spruit, H.C., Scharmer, G.B.: 2006, Fine structure, magnetic field and heating of sunspot penumbrae. Astron. Astrophys.447(1), 343. DOI .

    Article  ADS  Google Scholar 

  • Thomson, D.J.: 1982, Spectrum estimation and harmonic analysis. IEEE Proc.70, 1055.

    Article  ADS  Google Scholar 

  • Tritschler, A., Schmidt, W.: 2002, Sunspot photometry with phase diversity. II. Fine-structure characteristics. Astron. Astrophys.388, 1048. DOI .

    Article  ADS  Google Scholar 

  • Watanabe, H., Kitai, R., Ichimoto, K.: 2009, Characteristic dependence of umbral dots on their magnetic structure. Astrophys. J.702(2), 1048. DOI .

    Article  ADS  Google Scholar 

  • Watanabe, H., Tritschler, A., Kitai, R., Ichimoto, K.: 2010, Temporal evolution of a rapidly-moving umbral dot. Solar Phys.266(1), 5. DOI .

    Article  ADS  Google Scholar 

  • Watanabe, H., Bellot Rubio, L.R., de la Cruz Rodríguez, J., Rouppe van der Voort, L.: 2012, Temporal evolution of velocity and magnetic field in and around umbral dots. Astrophys. J.757(1), 49. DOI .

    Article  ADS  Google Scholar 

  • Weiss, N.O., Proctor, M.R.E., Brownjohn, D.P.: 2002, Magnetic flux separation in photospheric convection. Mon. Not. Roy. Astron. Soc.337(1), 293. DOI .

    Article  ADS  Google Scholar 

  • Wöger, F., von der Lühe, O.: 2007, Field dependent amplitude calibration of adaptive optics supported solar speckle imaging. Appl. Opt.46(33), 8015. DOI .

    Article  ADS  Google Scholar 

  • Yadav, R., Louis, R.E., Mathew, S.K.: 2018, Investigating the relation between sunspots and umbral dots. Astrophys. J.855(1), 8. DOI .

    Article  ADS  Google Scholar 

  • Yuan, D., Sych, R., Reznikova, V.E., Nakariakov, V.M.: 2014, Multi-height observations of magnetoacoustic cut-off frequency in a sunspot atmosphere. Astron. Astrophys.561, A19. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors would like to thanks to referee for his/her valuable comments and suggestions that improved the manuscript seriously. The high resolution sunspot data are taken from BBSO/GST. BSO operation is supported by NJIT and US NSF AGS-1821294 grants. GST operation is partly supported by the Korea Astronomy and Space Science Institute (KASI), Seoul National University, and by strategic priority research program of CAS with grant No. XDB09000000. This study was supported by Project 117F145 awarded by the Scientific and Technological Research Council of Turkey. V.Yu. acknowledges support from AFOSR FA9550-19-1-0040, NSF AGS-1821294, AST-1614457, and NASA HGC 80NSSC17K0016 and GI 80NSSC19K0257 grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Kilcik, Vasyl Yurchyshyn or Atila Ozguc.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilcik, A., Sarp, V., Yurchyshyn, V. et al. Physical Characteristics of Umbral Dots Derived from a High-Resolution Observations. Sol Phys 295, 58 (2020). https://doi.org/10.1007/s11207-020-01618-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01618-y

Keywords

Navigation