Skip to main content
Log in

Quantum Fisher information of a two-level system controlled by non-Hermitian operation under depolarization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigated the dynamics of quantum Fisher information for a two-level system controlled by a non-Hermitian operation under the depolarization, and the non-Hermitian operation is described by a special Hamiltonian in which both the \(\mathcal {PT}\)-symmetric zone and the \(\mathcal {PT}\)-symmetry broken zone are considered. Our results show that the non-Hermitian operation can effectively control the evolutionary behavior of quantum Fisher information of the system. Especially, through a proper choice of the non-Hermiticity parameter combining with the optimal input state and a low depolarizing probability, quantum Fisher information of the system can be significantly increased by the non-Hermitian operation. According to the quantum Cramér–Rao inequality, the inverse of quantum Fisher information provides the lower bound of the error of the parameter estimation. Our investigation also shows that the non-Hermiticity in the operation which is performed on the initial state is robust against the depolarizing decoherence, and the precision of parameter estimation can be remarkably enhanced by applying an appropriate non-Hermitian operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fisher, R.A.: Theory of statistical estimation. Math. Proc. Camb. Philos. Soc. 22, 700 (1925)

    ADS  MATH  Google Scholar 

  2. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  3. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. NorthHolland, Amsterdam (1982)

    MATH  Google Scholar 

  4. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. 49, 910 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Luo, S.-L.: Wigner–Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    ADS  Google Scholar 

  8. Zhong, W., Sun, Z., Ma, J., Wang, X.-G., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    ADS  Google Scholar 

  9. Yao, Y., Xiao, X., Ge, L., Wang, X.-G., Sun, C.-P.: Quantum Fisher information in noninertial frames. Phys. Rev. A 89, 042336 (2014)

    ADS  Google Scholar 

  10. Xiao, X., Yao, Y., Zhong, W.-J., Li, Y.-L., Xie, Y.-M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    ADS  Google Scholar 

  11. Huang, C.Y., Ma, W.-C., Wang, D., Ye, L.: How the relativistic motion affect quantum Fisher information and Bell non-locality for multipartite state. Sci. Rep. 7, 38456 (2017)

    ADS  Google Scholar 

  12. Paris, M.G.A.: Quantum estimaton for quantum technology. Int. J. Quantum Inf. 7, 125 (2009)

    MATH  Google Scholar 

  13. Rivas, Á., Luis, A.: Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. Phys. Rev. Lett. 105, 010403 (2010)

    ADS  Google Scholar 

  14. Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezzé, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    ADS  Google Scholar 

  15. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.-J.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

    ADS  Google Scholar 

  16. Tan, Q.-S., Huang, Y.-X., Yin, X.-L., Kuang, L.-M., Wang, X.-G.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)

    ADS  Google Scholar 

  17. Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88, 043832 (2013)

    ADS  Google Scholar 

  18. Tan, Q.-S., Huang, Y.-X., Kuang, L.-M., Wang, X.-G.: Dephasing-assisted parameter estimation in the presence of dynamical decoupling. Phys. Rev. A 89, 063604 (2014)

    ADS  Google Scholar 

  19. Teklu, B., Olivares, S., Paris, M.G.A.: Bayesian estimation of one-parameter qubit gates. J. Phys. B At. Mol. Opt. Phys. 42, 035502 (2009)

    ADS  Google Scholar 

  20. Brivio, D., Cialdi, S., Vezzoli, S., Gebrehiwot, B.T., Genoni, M.G., Olivares, S., Paris, M.G.A.: Experimental estimation of one-parameter qubit gates in the presence of phase diffusion. Phys. Rev. A 81, 012305 (2010)

    ADS  Google Scholar 

  21. Teklu, B., Genoni, M.G., Olivares, S., Paris, M.G.A.: Phase estimation in the presence of phase diffusion: the qubit case. Phys. Scr. T140, 014062 (2010)

    ADS  Google Scholar 

  22. Genoni, M.G., Olivares, S., Paris, M.G.A.: Optical phase estimation in the presence of phase diffusion. Phys. Rev. Lett. 106, 153603 (2011)

    ADS  Google Scholar 

  23. Rossi, M.A.C., Paris, M.G.A.: Entangled quantum probes for dynamical environmental noise. Phys. Rev. A 92, 010302(R) (2015)

    ADS  Google Scholar 

  24. Moiseyev, N.: Non-Hermitian Quantum Mechanics. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  25. Sergi, A., Zloshchastiev, K.G.: Non-Hermitian quantum dynamics of a two-level system and models of dissipative environments. Int. J. Mod. Phys. B 27, 1350163 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Zloshchastiev, K.G., Sergi, A.: Comparison and unification of non-Hermitian and Lindblad approaches with applications to open quantum optical systems. J. Mod. Opt. 61, 1298 (2014)

    ADS  Google Scholar 

  27. Rotter, I.: A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor. 42, 153001 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Mirza, I.M., van Enk, S.J., Kimble, H.J.: Single-photon time-dependent spectra in coupled cavity arrays. J. Opt. Soc. Am. B 30, 2640 (2013)

    ADS  Google Scholar 

  29. Lee, T.E., Reiter, F., Moiseyev, N.: Entanglement and spin squeezing in non-Hermitian phase transitions. Phys. Rev. Lett. 113, 250401 (2014)

    ADS  Google Scholar 

  30. Mirza, I.M., van Enk, S.J.: Single-photon time-dependent spectra in quantum optomechanics. Phys. Rev. A 90, 043831 (2014)

    ADS  Google Scholar 

  31. Feng, L., El-Ganainy, R., Ge, L.: Non-Hermitian photonics based on parity-time symmetry. Nat. Photon. 11, 752 (2017)

    ADS  Google Scholar 

  32. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Brody, D.C., Graefe, E.-M.: Mixed-state evolution in the presence of gain and loss. Phys. Rev. Lett. 109, 230405 (2012)

    ADS  Google Scholar 

  36. Chen, S.-L., Chen, G.-Y., Chen, Y.-N.: Increase of entanglement by local PT-symmetric operations. Phys. Rev. A 90, 054301 (2014)

    ADS  Google Scholar 

  37. Sergi, A., Zloshchastiev, K.G.: Time correlation functions for non-Hermitian quantum systems. Phys. Rev. A 91, 062108 (2015)

    ADS  Google Scholar 

  38. Li, C., Song, Z.: Generation of Bell, W, and Greenberger–Horne–Zeilinger states via exceptional points in non-Hermitian quantum spin systems. Phys. Rev. A 91, 062104 (2015)

    ADS  Google Scholar 

  39. Pati, A.K., Singh, U., Sinha, U.: Measuring non-Hermitian operators via weak values. Phys. Rev. A 92, 052120 (2015)

    ADS  Google Scholar 

  40. Zloshchastiev, K.G.: Non-Hermitian Hamiltonians and stability of pure states. Eur. Phys. J. D 69, 253 (2015)

    ADS  Google Scholar 

  41. Kozlowski, W., Caballero-Benitez, S.F., Mekhov, I.B.: Non-Hermitian dynamics in the quantum Zeno limit. Phys. Rev. A 94, 012123 (2016)

    ADS  Google Scholar 

  42. Hou, T.-J.: Quantum Fisher information and spin squeezing of the non-Hermitian one-axis twisting model and the effect of dephasing. Phys. Rev. A 95, 013824 (2017)

    ADS  MathSciNet  Google Scholar 

  43. Guo, Y.-N., Fang, M.-F., Wang, G.-Y., Hang, J., Zeng, K.: Enhancing parameter estimation precision by non-Hermitian operator process. Quantum Inf. Process 16, 301 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Dittmann, J.: Explicit formulae for the Bures metric. J. Phys. A Math. Gen. 32, 2663 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Kraus, K.: General state changes in quantum theory. Ann. Phys. 64, 311 (1971)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  47. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010)

    Google Scholar 

  48. Choi, Y., Kang, S., Lim, S., Kim, W., Kim, J.R., Lee, J.H., An, K.: Quasieigenstate coalescence in an atom-cavity quantum composite. Phys. Rev. Lett. 104, 153601 (2010)

    ADS  Google Scholar 

  49. Gao, T., Estrecho, E., Bliokh, K.Y., Liew, T.C.H., Fraser, M.D., Brodbeck, S., Kamp, M., Schneider, C., Höfling, S., Yamamoto, Y., Nori, F., Kivshar, Y.S., Truscott, A.G., Dall, R.G., Ostrovskaya, E.A.: Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554 (2015)

    ADS  Google Scholar 

  50. Liu, Z.P., Zhang, J., Özdemir, Ş.K., Peng, B., Jing, H., Lü, X.Y., Li, C.W., Yang, L., Nori, F., Liu, Y.X.: Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett. 117, 110802 (2016)

    ADS  Google Scholar 

  51. Tang, J.S., Wang, Y.T., Yu, S., He, D.Y., Xu, J.S., Liu, B.H., Chen, G., Sun, Y.N., Sun, K., Han, Y.J., Li, C.F., Guo, G.C.: Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system. Nat. Photon. 10, 642 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11374096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Fa Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YY., Fang, MF. Quantum Fisher information of a two-level system controlled by non-Hermitian operation under depolarization. Quantum Inf Process 19, 173 (2020). https://doi.org/10.1007/s11128-020-02671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02671-z

Keywords

Navigation