Skip to main content

Advertisement

Log in

Design of Localized Surface Plasmon Resonance (LSPR) Biosensor for Immunodiagnostic of E. coli O157:H7 Using Gold Nanoparticles Conjugated to the Chicken Antibody

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

E. coli O157:H7 is one of the most important pathogens in food-borne diseases and is the main cause of the pseudo pandemic development of hemorrhagic colitis and hemolytic uremic syndrome. Also E. coli O157:H7 is the most common serotype of Shiga-toxin-producing E. coli. Traditional methods for detecting E. coli O157:H7 are expensive, time-consuming, and less sensitive. A method with high sensitivity and high-resolution optical detection is utilizes the LSPR property of spherical gold nanoparticles (GNP). In this work, we constructed a novel nano-bio probe to detect E. coli O157:H7 by synthesizing citrate gold nanoparticle conjugated (non-covalent bond) with specific chicken anti-E. coli O157:H7 antibody (IgY) by changing the pH of the nanoparticles’ environment. UV-visible and DLS methods were used to confirm the bonding between the antibody and nanoparticles and the LSPR sensitivity of the nano-bio probe was evaluated by ELISA method. We could optically detect this bacterium in less than 2 h by measuring the LSPR band λ max shifts of GNPs. The sensitivity of this novel biosensor was determined by about 10 CFU/ml, using the LSPR property of spherical gold nanoparticles. So that, the LSPR λ max red shifted from 530 to 543 nm in presence of 10 CFU bacterium. In conclusion, this nano biosensor can be used to detect this important pathogen among the clinical specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karmali MA, Gannon V, Sargeant JM (2010) Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol 140(3–4):360–370. https://doi.org/10.1016/j.vetmic.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  2. Fairbrother JM, Nadeau E (2006) Escherichia coli: on-farm contamination of animals. Rev Sci Tech 25(2):555–569 http://www.ecl-lab.com/fr/news/documents/oierev08-fairbrother555-569.pdf. Accessed Sept 2006

  3. Gyles C (2007) Shiga toxin-producing Escherichia coli: an overview. J Anim Sci 85(13):45–62 https://academic.oup.com/jas/article-abstract/85/suppl_13/E45/4775311. Accessed April 2007

  4. Scheutz F (2014) Taxonomy meets public health: the case of Shiga toxin producing Escherichia coli. ASM Press, Washington

    Google Scholar 

  5. Yang X, Bai X, Zhang J, Sun H, Fu S, Fan R, et al (2019) Escherichia coli strains producing a novel Shiga toxin 2 subtype circulate in China. Int J Med Microbiol 151377. https://doi.org/10.1016/j.ijmm.2019.151377

  6. Fuller CA, Pellino CA, Flagler MJ, Strasser JE, Weiss AA (2011) Shiga toxin subtypes display dramatic differences in potency. Infect Immun 79:1329–1337. https://doi.org/10.1128/IAI.01182-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ko H, Maymani H, Rojas-Hernandez C (2016) Hemolytic uremic syndrome associated with Escherichia coli O157:H7 infection in order adults: a case report and review of the literature. J Med Case Rep 10:17. https://doi.org/10.1186/s13256-016-0970

    Article  Google Scholar 

  8. Razzaq S (2006) Hemolytic uremic syndrome: an emerging health risk. Am FAM Phys 74(6):991–996

    Google Scholar 

  9. Boyce TG, Swerdlow DL, Griffin PM (1995) Escherichia coli O157:H7 and the hemolytic-uremic syndrome. N Engl J Med 333:364–368. https://doi.org/10.1056/NEJM199508103330608

    Article  CAS  PubMed  Google Scholar 

  10. Radke SM, Alocilja EC (2005) A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens Bioelectron 20(8):1662–1667. https://doi.org/10.1016/j.bios.2004.07.021

    Article  CAS  PubMed  Google Scholar 

  11. Piliarik M, Parova L, Homola J (2009) High-throughput SPR sensor for food safety. Biosens Bioelectron 24(5):1399–1404. https://doi.org/10.1016/j.bios.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  12. Eum NS, Yeom SH, Kwon DH, Kim HR, Kang SW (2010) Enhancement of sensitivity using gold nanorods-antibody conjugator for detection of E. coli O157: H7, Sens. Actuators B: Chem 143:784–788. https://doi.org/10.1016/j.snb.2009.09.054

    Article  CAS  Google Scholar 

  13. Homola J, Piliarik M (2006) Surface Plasmon resonance (SPR) sensors. Springer, Berlin

    Book  Google Scholar 

  14. Green RJ, Frazier RA, Shakesheff KM, Davies MC, Roberts CJ, Tendler SJ (2000) Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials 21(18):1823–1835. https://doi.org/10.1016/S0142-9612(00)00077-6

    Article  CAS  PubMed  Google Scholar 

  15. Kovacs-Nolan J, Mine Y (2004) Passive immunization through avian egg antibodies. Food Biotechnol 18:39e62. https://doi.org/10.1081/FBT-120030384

    Article  CAS  Google Scholar 

  16. Barati B, Ebrahimi F, Nazarian S (2018) Production of chicken egg yolk antibody (IgY) against recombinant cholera toxin B subunit and evaluation of its prophylaxis potency in mice. Iran J Immunol 15(1):47–58

    PubMed  Google Scholar 

  17. Sunwoo HH, Wang WW, Sim JS (2006) Detection of Escherichia coli O157:H7 using chicken immunoglobulin Y. Immunol Lett 106(2):191–193. https://doi.org/10.1016/j.imlet.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  18. Wadkins RM, Golden JP, Pritsiolas LM, Ligler FS (1999) Detection of multiple toxic agents using a planar array immunosensor. Biosens Bioelectron 13(3–4):407–415. https://doi.org/10.1016/S0956-5663(97)00113-9

    Article  Google Scholar 

  19. Lei JH, Guan F, Xu H, Chen L, Su BT, Zhou Y (2012) Application of an immunomagnetic bead ELISA based on IgY for detection of circulating antigen in urine of mice infected with Schistosoma japonicum. Vet Parasitol 187(1–2):196–202. https://doi.org/10.1016/j.vetpar.2011.12.017

    Article  CAS  PubMed  Google Scholar 

  20. Xiao Y, Gao X, Gannot E-BMR, Srivastava S, Wagner PD (2008) Quantitation of HER2 and telomerase biomarkers in solid tumors with IgY antibodies and nanocrystal detection. Int J Cancer 122(10):2178–2186. https://doi.org/10.1002/ijc.23320

    Article  CAS  PubMed  Google Scholar 

  21. Bakhshi M, Ebrahimi F, Nazarian S, Zargan J, Behzadi F, Gariz DS (2017) Nano-encapsulation of chicken immunoglobulin (IgY) in sodium alginate nanoparticles: in vitro characterization. Biologicals. 49:69–75. https://doi.org/10.1016/j.biologicals.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  22. Dong J, Carpinone PL, Pyrgiotakis G, Demokritou P, Moudgil BM (2019) Synthesis of precision gold nanoparticles using Turkevich method. Kona Powder Part J 1–8. https://doi.org/10.14356/kona.2020011

  23. Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B (2016) Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Bio-Sens Res 9:17–22. https://doi.org/10.1016/j.sbsr.2016.04.002

    Article  Google Scholar 

  24. Kootallur BN, Thangavelu CP, Mani M (2011) Bacterial identification in the diagnostic laboratory: how much is enough? Indian J Med Microbiol 94(4):336–340. https://doi.org/10.4103/0255-0857.90156

    Article  Google Scholar 

  25. Houpikian P, Raoult D (2002) Traditional and molecular techniques for the study of emerging bacterial diseases: one laboratory's perspective. Emerg Infect Dis 8(2):122–131. https://doi.org/10.3201/eid0802.010141

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hammond JL, Bhalla N, Rafiee S, Estrela P (2014) Localized surface Plasmon resonance as a biosensing platform for developing countries. Biosensors 4:172–188. https://doi.org/10.3390/bios4020172

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zeinoddini M, Azizi A, Bayat S, Tavasoli Z (2018) Localized surface plasmon resonance (LSPR) detection of diphtheria toxoid using gold nanoparticle-monoclonal antibody conjugates. Plasmonics 13(2):583–590. https://doi.org/10.1007/s11468-017-0548-7

    Article  CAS  Google Scholar 

  28. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28. https://doi.org/10.2217/17435889.2.5.681

    Article  Google Scholar 

  29. Li B, Liu H, Wang W (2017) Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E.coli. BMC Microbiol 17:215. https://doi.org/10.1186/s12866-017-1123-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ibekwe AM, Watt PM, Grieve CM, Sharma VK, Lyons SR (2002) Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. App Environ Microbiol 68(10):4853–4862. https://doi.org/10.1128/AEM

    Article  CAS  Google Scholar 

  31. Ranjbar R, Erfanmanesh M, Afshar D, Mohammadi M, Ghaderi O, Haghnazari A (2016) Visual detection of Enterohemorrhagic Escherichia coli O157:H7 using loop-mediated isothermal amplification. Electron Physician 8(6):2576–2585. https://doi.org/10.19082/2576

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pan TM, Chen LM, Su YC (2002) Identification of Escherichia coli O157:H7 by multiplex PCR with primers specific to the hlyA, eaeA, stx1, stx2fliC and rfb genes. J Formos Med Assoc 101(9):661–664 http://www.fma.org.tw/jfma/PDF/2002-101/Issue%2009/A10. Accessed Sept 2002

  33. Csaki A, Stranik O, Fritzsche W (2018) Localized surface plasmon resonance based biosensing. Exp Rev Mol Diagnos 18(3):279–296. https://doi.org/10.1080/14737159.2018.1440208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the research council of The Malek-Ashtar University of Technology for the financial support of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Zeinoddini.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghubi, F., Zeinoddini, M., Saeedinia, A.R. et al. Design of Localized Surface Plasmon Resonance (LSPR) Biosensor for Immunodiagnostic of E. coli O157:H7 Using Gold Nanoparticles Conjugated to the Chicken Antibody. Plasmonics 15, 1481–1487 (2020). https://doi.org/10.1007/s11468-020-01162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01162-2

Keywords

Navigation