Skip to main content
Log in

Evaluation of Aluminum Dross Generation Rate During Mechanical Stirring of Aluminum Through Model Experiment and Numerical Simulation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The present study proposed, for the first time, an evaluation method to predict the generation rate of aluminum dross in melting or holding furnaces during mechanical stirring of molten aluminum through water model experiments and numerical simulation. In the experiments, a gas–liquid interface reaction between CO2 gas and NaOH solution was exploited as a model reaction between the aluminum melt and air moisture, and perlite particles were used to model dross layer on the free surface of liquid aluminum. The results reveal that the reaction rate is increased with the impeller rotation speed. Besides, the reaction rate depends on the impeller rotation direction, but this dependence is different for the cases of presence and absence of particles on the liquid surface. In the first case, the reaction rate at the counter-clock rotation was higher than that at the clock-wise rotation. On the other hand, in the second case, the clock-wise impeller rotation yielded a higher reaction rate compared to the counter-clock rotation case. These phenomena can be explained by the mass transfer across the gas–liquid interface at the particle-free area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] K. Matsuzaki, T. Shimizu, Y. Murakoshi, K. Takahashi: Light Metals 2011, vol. 2011, pp. 1199-1203. https://doi.org/10.1007/978-3-319-48160-9_203

    Article  Google Scholar 

  2. [2] T. Yamamoto, K. Kato, S.V. Komarov, Y. Ueno, M. Hayashi, Y. Ishiwata: J. Mater. Process. Technol., 2018a, vol. 259, pp. 409-415. https://doi.org/10.1016/j.jmatprotec.2018.04.025

    Article  CAS  Google Scholar 

  3. [3] M. Maniruzzaman, M. Makhlouf: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 305-314. https://doi.org/10.1007/s11663-002-0014-5

    Article  CAS  Google Scholar 

  4. J.F. Bilodeau, Y. Kocaefe: Light Met. 2001, pp. 1009–15.

  5. [5] W. Bujalski, M. Kimata, N. Nayan, J.L. Song, M.R. Jolly, A.W. Nienow: Chem. Eng. Technol., 2004, vol. 27, pp. 310-314. https://doi.org/10.1002/ceat.200401982

    Article  CAS  Google Scholar 

  6. M.E. Schlesinger: Aluminum Recycling, Second Edition. CRC Press, Boca Raton, 2017.

    Google Scholar 

  7. Pyrotek: Electromagnetic pump (EMP) systems, April 7, 2019. https://www.pyrotek.com/industries/aluminium/foundry/metal-melting-foundry/show/ProductLine/electromagnetic-pump-emp-systems?virtualpageid=9527

  8. [8] V.S. Warke, G. Tryggvason, M.M. Makhlouf: J. Mater. Process. Technol., 2015a, vol. 168, pp. 112-118. https://doi.org/10.1016/j.jmatprotec.2004.10.017

    Article  CAS  Google Scholar 

  9. [9] V.S. Warke, G. Tryggvason, M.M. Makhlouf: J. Mater. Process. Technol., 2015b, vol. 168, pp. 119-126. https://doi.org/10.1016/j.jmatprotec.2004.10.016

    Article  CAS  Google Scholar 

  10. [10] S.T. Johansen, S.G. Graadahl, T.F. Hagelien: Appl. Mathe. Model., 2004, vol. 28, pp. 63-77. https://doi.org/10.1016/S0307-904X(03)00119-7

    Article  Google Scholar 

  11. [11] F. Kerdouss, L. Kiss, P. Proulx, J.F. Bilodeau, C. Dupuis: Int. J. Chem. Reactor Eng., 2005, vol. 3, pp. A35. https://doi.org/10.2202/1542-6580.1217

    Article  Google Scholar 

  12. [12] M. Saternus: J. Achiev. Mater. Manuf. Eng., 2012, vol. 55, pp. 285-290.

    Google Scholar 

  13. [13] E.R. Gómez, R. Zenit, C.G. Rivera, G. Trápaga, M.A. Ramírez-Argáez: Metall. Mater. Trans. B, 2013a, vol. 44B, pp. 423-435. https://doi.org/10.1007/s11663-012-9774-8

    Article  CAS  Google Scholar 

  14. [14] E.R. Gómez, R. Zenit, C.G. Rivera, G. Trápaga, M.A. Ramírez-Argáez: Metall. Mater. Trans. B, 2013b, 44B, 974-983. https://doi.org/10.1007/s11663-013-9845-5

    Article  CAS  Google Scholar 

  15. [15] E. Mancilla, W. Cruz-Méndez, I.E. Garduño, C. González-Rivera, M.A. Ramírez-Argáez, G. Ascanio: Chem. Eng. Res. Des., 2017, vol. 118, pp. 158-165. http://dx.doi.org/10.1016/j.cherd.2016.11.031

    Article  CAS  Google Scholar 

  16. [16] D. Abreu-López, A. Amaro-Villeda, A. Acosta-González, C. González-Rivera, M.A. Ramírez-Argáez: Metals, 2017, vol. 7, pp. 132. https://doi.org/10.3390/met7040132

    Article  CAS  Google Scholar 

  17. [17] D. Abreu-López, A. Dutta, J.L. Camacho-Martínez, G. Trapaga-Martínez, M.A. Ramírez-Argáez: JOM, 2018, vol. 70, pp. 2958-2967. https://doi.org/10.1007/s11837-018-3147-y

    Article  CAS  Google Scholar 

  18. [18] T. Yamamoto, Y. Fang, S.V. Komarov: Chem. Eng. Sci., 2019, vol. 197, pp. 26-36. https://doi.org/10.1016/j.ces.2018.12.007

    Article  CAS  Google Scholar 

  19. D. Dispinar, S. Akhtar, A. Nordmark, M.D. Sabatino, L. Arnberg: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3719-3725. 10.1016/j.msea.20

    Article  Google Scholar 

  20. [20] H. Bagherpour-Torghabeh, R. Raiszadeh, H. Doostmohammadi: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3456-3469. https://doi.org/10.1007/s11663-018-1414-5

    Article  CAS  Google Scholar 

  21. [21] H. Venugapalan, K. Tankala, T. DebRoy: Mater. Sci. Eng. A, 1996, vol. A210, pp. 64-75. https://doi.org/10.1016/0921-5093(95)10072-5

    Article  Google Scholar 

  22. [22] K. C. Vlach, O. Salas, H. Ni, C. G. Levi, R. Mehrabin: J. Mater. Res., 1991, vol. 6, pp. 1982-1995. https://doi.org/10.1557/JMR.1991.1982

    Article  CAS  Google Scholar 

  23. [23] S. Inada, T. Watanabe: Tetsu-to-Hagane, 1976, vol. 7, pp. 807-816.

    Article  Google Scholar 

  24. [24] T. Yamamoto, A. Suzuki, S.V. Komarov, Y. Ishiwata: J. Mater. Process. Technol., 2018b, vol. 261, pp. 164-172. https://doi.org/10.1016/j.jmatprotec.2018.06.012

    Article  CAS  Google Scholar 

  25. [25] H. K. Versteeg and W. Makakasekera, An introduction to computational fluid dynamics second edition. Pearson Education Ltd., Tokyo, 2007.

    Google Scholar 

  26. [26] J. R. Welty, C. E. Wicks, R. E. Wilson, G. L. Rorrer, Fundamentals of momentum, heat, and mass transfer, 5th edition. Wiley, Hoboken, 2008.

    Google Scholar 

Download references

Acknowledgments

The present research is supported partly by Collaborative Research Program for Young Scientists of ACCMS and IIMV, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 7, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, T., Kato, K., Komarov, S.V. et al. Evaluation of Aluminum Dross Generation Rate During Mechanical Stirring of Aluminum Through Model Experiment and Numerical Simulation. Metall Mater Trans B 51, 1836–1846 (2020). https://doi.org/10.1007/s11663-020-01842-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01842-8

Navigation