Skip to main content
Log in

The role of alpha-synuclein as ferrireductase in neurodegeneration associated with Parkinson’s disease

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Misfolding of the protein α-synuclein contributes to the formation of the intracellular inclusion, Lewy bodies. Although these structures are not exclusive to Parkinson’s disease, nevertheless, their presence in the substantia nigra is mandatory for the pathological diagnosis of the disorder. Therefore, there must be a focus on the pathological mechanisms responsible for Lewy body generation. Recent studies have suggested that α-synuclein has the potential to operate as the enzyme ferrireductase. Perhaps in the early diseased state, overexpression or mutation of alpha-synuclein/ferrireductase invokes the dyshomeostasis of iron (III)/(II) only, while in advanced stages, accumulation of iron in particular areas of the brain follows. Furthermore, the loss of an important iron chelator, neuromelanin (due to dopaminergic neuronal death), may then result in the release and increase in unbound free iron. Iron could generate reactive oxygen species, which could instigate a torrent of cellular deleterious processes. In addition, loss of energy supply may contribute to the alteration in activity of enzymes involved in the mitochondrial respiratory chain and would, therefore, confer a vulnerability to the dopaminergic neurons in the substantia nigra. Therefore, the ferrireductase alpha-synuclein may hold the key for major pathology of Parkinson’s disease. In conclusion, we hypothesize that environmentally or genetically overexpressed and/or mutated α-synuclein/ferrireductase causes iron dyshomeostasis without increase of free iron concentration in the early phases of PD, while increased iron concentration accompanied by iron dyshomeostasis is a marker for progressed PD stages. It is essential to elucidate these degenerative mechanisms, so as to provide effective therapeutic treatment to halt or delay the progression of the illness already in the early phase of PD. The development of iron chelators seems to be a reasonable approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abeyawardhane DL, Lucas HR (2019) Iron redox chemistry and implications in the Parkinson's disease brain. Oxid Med Cell Longev. https://doi.org/10.1155/2019/4609702

    PubMed  PubMed Central  Google Scholar 

  • Agarwal S, Fox J, Thyagarajan B, Fox JH (2018) Brain mitochondrial iron accumulates in Huntington's disease, mediates mitochondrial dysfunction, and can be removed pharmacologically. Free Radic Biol Med 120:317–329. https://doi.org/10.1016/j.freeradbiomed.2018.04.002

    CAS  Google Scholar 

  • Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. J Neurochem 139(Suppl 1):179–197. https://doi.org/10.1111/jnc.13425(Epub 2016 Feb 10)

    CAS  PubMed  Google Scholar 

  • Bellinger FP, Bellinger MT, Seale LA, Takemoto AS, Raman AV, Miki T, Manning-Boğ AB, Berry MJ, White LR, Ross GW (2011) Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of Parkinson's brain. Mol Neurodegener 6(1):8. https://doi.org/10.1186/1750-1326-6-8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Shachar D, Eshel G, Riederer P, Youdim MBH (1992) Role of iron and iron chelation in dopaminergic-induced neurodegeneration: implication for Parkinson’s disease. Ann Neurol 32:S105–S110

    CAS  PubMed  Google Scholar 

  • Brown DR (2013) α-Synuclein as a ferrireductase. Biochem Soc Trans 41(6):1513–1517

    CAS  PubMed  Google Scholar 

  • Bu XL, Xiang Y, Guo Y (2019) The role of iron in amyotrophic lateral sclerosis. Adv Exp Med Biol 1173:145–152. https://doi.org/10.1007/978-981-13-9589-5_8

    CAS  PubMed  Google Scholar 

  • Deas E, Cremades N, Angelova PR, Marthe HR, Ludtmann HR, Zhi Y, Chen S, Horrocks MH, Banushi B, Little D, Devine MJ, Gissen P, Klenerman D, Dobson CM, Wood NW, Gandhi S, Abramov AY (2017) Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson's disease. Prog Neurobiol 155:96–119

    Google Scholar 

  • Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, Jonneaux A, Ryckewaert G, Garçon G, Rouaix N, Duhamel A, Jissendi P, Dujardin K, Auger F, Ravasi L, Hopes L, Grolez G, Firdaus W, Sablonnière B, Strubi-Vuillaume I, Zahr N, Destée A, Corvol JC, Pöltl D, Leist M, Rose C, Defebvre L, Marchetti P, Cabantchik ZI, Bordet R (2014) Targeting chelatable iron as a therapeutic modality in Parkinson's disease. Antioxid Redox Signal 21(2):195–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland AS, Duce JA, Devedjian JC, FAIRPARK-II, and FAIRALS-II studygroups (2020) Conservative iron chelation for neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis. J Neural Transm (Vienna). 127(2):189–203. https://doi.org/10.1007/s00702-019-02138-1(Epub 2020 Jan 7. Review)

    CAS  PubMed  Google Scholar 

  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J Neurochem 52(6):1830–1836

    CAS  PubMed  Google Scholar 

  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FY, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative disorders affecting the basal ganglia. Brain 114(4):1953–1975

    PubMed  Google Scholar 

  • Double K, Zecca L, Costo P, Mauer M, Griesinger C, Ito S, Ben-Shachar D, Bringmann G, Fariello RG, Riederer P, Gerlach M (2000) Structural characteristics of human substantia nigra neuromelanin and synthetic dopamine melanins. J Neurochem 75:2583–2589

    CAS  PubMed  Google Scholar 

  • Double KL, Gerlach M, Schünemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MB, Riederer P, Ben-Shachar D (2003) Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 66(3):489–494

    CAS  PubMed  Google Scholar 

  • Flagmeier P, Meisl G, Vendruscolo M, Knowles TP, Dobson CM, Buell AK, Céline AG (2016) Mutations associated with familial Parkinson’s disease alter the initiation and amplification steps of α-synuclein aggregation. Proc Natl Acad Sci USA 113(37):10328–10333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Götz ME, Gerstner A, Harth R, Dirr A, Janetzky B, Kuhn W, Riederer P, Gerlach M (2000) Altered redox state of platelet coenzyme Q10 in Parkinson's disease. J Neural Transm (Vienna) 107(1):41–48

    Google Scholar 

  • Grünewald A, Rygiel KA, Hepplewhite PD, Morris CM, Picard M, Turnbull DM (2016) Mitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons. Annals Neurol 79(3):366–378

    Google Scholar 

  • Haas RH, Nasirian F, Nakano K, Ward D, Mary P, Hill R, Shults CW (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann Neurol. https://doi.org/10.1002/ana.410370604

    PubMed  Google Scholar 

  • Hamed MY, Silver J (1983) Studies on the reactions of ferric iron with glutathione and some related thiols. Part II. Complex formation in the pH range three to seven. Inorg Chim Acta 80:115–122

    CAS  Google Scholar 

  • Hamed MY, Silver J, Wilson MT (1983) Studies on the reactions of ferric iron with glutathione and some related thiols. Part III. A study of the iron catalyzed oxidation of glutathione by molecular oxygen. Inorg Chim Acta 80:237–244

    CAS  Google Scholar 

  • Hebron ML, Lonskaya I, Moussa CE (2013) Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson's disease models. Hum Mol Genet 22(16):3315–3328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huenchuguala S, Sjödin B, Mannervik B, Segura-Aguilar J (2019) Novel alpha-synuclein oligomers formed with the aminochrome-glutathione conjugate are not neurotoxic. Neurotox Res 35(2):432–440. https://doi.org/10.1007/s12640-018-9969-0(Epub 2018 Oct 20)

    CAS  PubMed  Google Scholar 

  • Jellinger KA (2019) Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm 126(8):933–995. https://doi.org/10.1007/s00702-019-02028-6(Epub 2019 Jun 18)

    PubMed  Google Scholar 

  • Joppe K, Roser A-E, Maass F, Lingor P (2019) The contribution of iron to protein aggregation disorders in the central nervous system. Front Neurosci 13:15

    PubMed  PubMed Central  Google Scholar 

  • Khan TR, Langford CH (1976) Kinetic and spectsophotometric studies of binding of iron(II1) by glutathione. Can J Chem 54:3192

    CAS  Google Scholar 

  • Koo HJ, Yang JE, Park JH, Lee D, Paik SR (2013) α-Synuclein-mediated defense against oxidative stress via modulation of glutathione peroxidase. Biochim Biophys Acta 1834(6):972–976. https://doi.org/10.1016/j.bbapap.2013.03.008(Epub 2013 Mar 16)

    CAS  PubMed  Google Scholar 

  • Langley J, He N, Huddleston DE, Chen S, Yan F, Crosson B, Factor S, Hu X (2019) Reproducible detection of nigral iron deposition in 2 Parkinson's disease cohorts. Mov Disord 34(3):416–419

    CAS  PubMed  Google Scholar 

  • Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C (2018) Iron and Alzheimer's disease: from pathogenesis to therapeutic implications. Front Neurosci 12:632

    PubMed  PubMed Central  Google Scholar 

  • Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):3143–3153. https://doi.org/10.1016/j.bbagen.2012.09.008

    CAS  PubMed  Google Scholar 

  • Martin LJ (2006) Mitochondriopathy in Parkinson disease and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 65(12):1103–1110

    CAS  PubMed  Google Scholar 

  • Martin-Ruiz C, Williams-Gray CH, Yarnall AJ, Boucher JJ, Lawson RA, Wijeyekoon RS, Barker RA, Kolenda C, Parker C, Burn DJ, Von Zglinicki T, Saretzki G (2020) Senescence and inflammatory markers for predicting clinical progression in Parkinson’s disease: the ICICLE-PD study. J Parkinson's Dis 10(1):193

    CAS  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun 163(3):1450–1455

    CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Kiuchi K, Kojima K, Kondo T, Narabayashi H, Rausch D, Riederer P, Jellinger K, Nagatsu T (1988) Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in parkinsonian brain. J Neural Transm 72(1):77–82

    CAS  PubMed  Google Scholar 

  • Moors TE, Hoozemans JJ, Ingrassia A, Beccari T, Parnetti L, Chartier-Harlin MC, van de Berg WD (2017) Therapeutic potential of autophagy-enhancing agents in Parkinson's disease. Mol Neurodegener 12(1):11

    PubMed  PubMed Central  Google Scholar 

  • Müller T, Kohlhepp W (2018) Nigral depigmentation reflects monoamine exhaustion as initial step to Parkinson's disease. Med Hypotheses 110:46–49

    PubMed  Google Scholar 

  • Müller T, Trommer I, Muhlack S, Mueller BK (2016) Levodopa increases oxidative stress and repulsive guidance molecule A levels: a pilot study in patients with Parkinson’s disease. J Neural Transm 123:401–406

    PubMed  Google Scholar 

  • Muñoz Y, Carrasco CM, Campos JD, Aguirre P, Núñez MT (2016) Mitochondria: key organelle in Parkinson’s disease. Parkinsons Dis. https://doi.org/10.1155/2016/7049108

    PubMed  PubMed Central  Google Scholar 

  • Nuñez MT, Chana-Cuevas P (2018) New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals. https://doi.org/10.3390/ph11040109

    PubMed  PubMed Central  Google Scholar 

  • Perfeito R, Ribeiro M, Rego AC (2017) Alpha-synuclein-induced oxidative stress correlates with altered superoxide dismutase and glutathione synthesis in human neuroblastoma SH-SY5Y cells. Arch Toxicol 91(3):1245–1259. https://doi.org/10.1007/s00204-016-1788-6(Epub 2016 Jul 16)

    CAS  PubMed  Google Scholar 

  • Petillon C, Hergesheimer R, Puy H, Corcia P, Vourc'h P, Andres C, Karim Z, Blasco H (2019) The relevancy of data regarding the metabolism of iron to our understanding of deregulated mechanisms in ALS; hypotheses and pitfalls. Front Neurosci 12:1031. https://doi.org/10.3389/fnins.2018.01031(eCollection 2018)

    PubMed  PubMed Central  Google Scholar 

  • Qi W, Li J, Chain CY, Pasquevich GA, Pasquevich AF, Cowan JA (2012) Glutathione complexed Fe–S centers. J Am Chem Soc 134(26):10745–10748. https://doi.org/10.1021/ja302186j(Epub 2012 Jun 21)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rausch WD, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Tyrosine hydroxylase activity in caudate nucleus from Parkinson's disease: effects of iron and phosphorylating agents. J Neurochem 50(1):202–208

    CAS  PubMed  Google Scholar 

  • Reichmann H, Riederer P (1989) Biochemische Analyse der Atmungskettenkomplexe verschiedener Hirnregionen von Patienten mit Morbus Parkinson. In: Symposium des BMFT Morbus Parkinson und andere Basalganglienerkrankun-gen, S. 44 (abstr.)

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52(2):515–520

    CAS  PubMed  Google Scholar 

  • Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, Jost W, Krüger R, Müller T, Reichmann H, Rieß O, Storch A, Strobel S, van Eimeren T, Völker HU, Winkler J, Winklhofer KF, Wüllner U, Zunke F, Monoranu CM (2019) α-Synuclein in Parkinson's disease: causal or bystander? J Neural Transm (Vienna) 126(7):815–840

    Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269. https://doi.org/10.1016/S0140-6736(89)92366-0

    CAS  PubMed  Google Scholar 

  • Sian J, Dexter DT, Jenner P, Marsden CD (1991) Decrease in nigral reduced glutathione in Parkinson’s disease. Br J Pharmacol 104:281P

    Google Scholar 

  • Sian J, Dexter D, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marden CD (1994) Alterations in glutathione in Parkinson’s disease and other neurodegenerative disorders affecting the basal ganglia. Ann Neurol 36(3):348–355

    CAS  PubMed  Google Scholar 

  • Sian-Hülsmann J, Mandel S, Youdim MB, Riederer P (2011) The relevance of iron in the pathogenesis of Parkinson's disease. J Neurochem 118(6):939–957

    PubMed  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Trans 74:199–205

    CAS  Google Scholar 

  • Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease. Neurosci Lett 142(2):128–130

    CAS  PubMed  Google Scholar 

  • Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talan J (2019) 3 Different clinical subtypes of Parkinson's disease. J Parkinsons Dis 5(4):699–713

    Google Scholar 

  • Ward RJ, Crichton RR. (2019) Ironing out the Brain. Met Ions Life Sci. Jan 14;1

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    CAS  PubMed  Google Scholar 

  • Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119

    CAS  PubMed  Google Scholar 

  • Zucca FA, Vanna R, Cupaioli FA, Bellei C, De Palma A, Di Silvestre D, Mauri P, Grassi S, Prinetti A, Casella L, Sulzer D, Zecca L (2018) Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and lipids in aging human brain and are likely involved in Parkinson's disease. NPJ Parkinsons Dis 4:17

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeswinder Sian-Hulsmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sian-Hulsmann, J., Riederer, P. The role of alpha-synuclein as ferrireductase in neurodegeneration associated with Parkinson’s disease. J Neural Transm 127, 749–754 (2020). https://doi.org/10.1007/s00702-020-02192-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-020-02192-0

Keywords

Navigation