Skip to main content
Log in

Implementation of magnetic field force in molecular dynamics algorithm: NAMD source code version 2.12

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The external fields, such as the magnetic force, have made advances in many industrial and biotechnology applications during the past century, although the changes in the structure of materials under the impact of the electromagnetic fields have not entirely been clear yet. The molecular simulation technique by providing extensive data from the configuration and orientations of the atoms is becoming the effective useful tool for scientists in a wide range of research areas. This paper presents an extended velocity Verlet algorithm inside the Nanoscale Molecular Dynamics (NAMD) package that enhances the NAMD features with the capability to compute the magnetic field force. We described how this novel feature has been implemented inside the package. Moreover, the results are reported for the rotation of a charged particle, and the thermo-physical properties of water in the presence of a magnetic field confirming how this developed NAMD source code provides accurate measurements compared with other available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

B :

magnetic field \( 1\ \mathrm{T}=1\ \frac{\mathrm{kg}}{\mathrm{Amp}.{\mathrm{s}}^2}=1\frac{\mathrm{V}.\mathrm{s}}{{\mathrm{m}}^2} \)=1 \( \frac{\mathrm{kg}}{\mathrm{s}.\mathrm{C}} \)

R :

coordinate \( 1\ \mathrm{m}=1\times {10}^{10}\overset{{}^{\circ}}{\mathrm{A}} \)

∆t :

time step 1 s = 1 × 1012ps

V :

velocity \( \left[\frac{\overset{{}^{\circ}}{\mathrm{A}}}{\mathrm{pS}}\right] \)

E :

energy 1 eV = 1.602 × 10−19 J

F :

force \( 69.48\ pN=1\ \frac{\mathrm{kcal}}{\mathrm{mol}.\overset{{}^{\circ}}{\mathrm{A}}} \)

M :

mass 1 Da = 1.66 × 10−27kg

Q :

charge 1 [e] = 1.6 × 10−19 C

References

  1. Cai R, Yang H, He J, Zhu W (2009) The effects of magnetic fields on water molecular hydrogen bonds. J Mol Struct 938:15–19. https://doi.org/10.1016/j.molstruc.2009.08.037

    Article  CAS  Google Scholar 

  2. Chang KT, Weng CI (2008) An investigation into the structure of aqueous NaCl electrolyte solutions under magnetic fields. Comput Mater Sci 43:1048–1055. https://doi.org/10.1016/j.commatsci.2008.02.020

    Article  CAS  Google Scholar 

  3. Holysz L, Szczes A, Chibowski E (2007) Effects of a static magnetic field on water and electrolyte solutions. J Colloid Interface Sci 316:996–1002. https://doi.org/10.1016/j.jcis.2007.08.026

    Article  CAS  PubMed  Google Scholar 

  4. Seyfi A, Afzalzadeh R, Hajnorouzi A (2017) Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface. Chem Eng Process Process Intensif 120:195–200. https://doi.org/10.1016/j.cep.2017.06.009

    Article  CAS  Google Scholar 

  5. Pazur A, Winklhofer M (2008) Magnetic effect on CO2 solubility in seawater: a possible link between geomagnetic field variations and climate. Geophys Res Lett 35:1–5. https://doi.org/10.1029/2008GL034288

    Article  CAS  Google Scholar 

  6. Hashemizadeh A, Gholizadeh M, Tabatabaeinejad A (2011) Petroleum Science and Technology The Possibility of Enhanced Oil Recovery by Using Magnetic Water Flooding. 37–41. https://doi.org/10.1080/10916466.2011.634875

    Article  CAS  Google Scholar 

  7. Mohammadpourfard M, Aminfar H, Khajeh K (2014) Concentration polarization effects on the macromolecular transport in the presence of non-uniform magnetic field: a numerical study using a lumen-wall model. J Magn Magn Mater 356:111–119. https://doi.org/10.1016/j.jmmm.2013.12.031

    Article  CAS  Google Scholar 

  8. Su N, Wu CF (2003) Effect of magnetic field treated water on mortar and concrete containing fly ash. Cem Concr Compos 25:681–688. https://doi.org/10.1016/S0958-9465(02)00098-7

    Article  CAS  Google Scholar 

  9. Todorov I, Smith W, Cheshire U (2010) The DL POLY 4 user manual. STFC Daresbury Laboratory Daresbury, Warrington WA4 4AD Cheshire, UK, Version 4.01.0

  10. Chang K-T, Weng C-I (2006) The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J Appl Phys 100:043917. https://doi.org/10.1063/1.2335971

    Article  CAS  Google Scholar 

  11. Valle ED, Marracino P, Setti S, Cadossi R, Liberti M, Apollonio F (2017) magnetic molecular dynamics simulation GROMACS velocityverlet algorithm. 32nd URSI GASS, Montreal 19–26 August

  12. Chen X, Hou L, Li W et al (2018) Molecular dynamics simulation of magnetic field influence on waxy crude oil. J Mol Liq 249:1052–1059. https://doi.org/10.1016/j.molliq.2017.11.101

    Article  CAS  Google Scholar 

  13. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R, Kalé L, Schulten K (2005) Scalable Molecular Dynamics with NAMD. J Comput Chem 360:1640–1645

  14. Maffeo C, Carr R, Aksimentiev A, Introduction to MD simulation of DNA–protein systems, Aksimentiev Group Department of Physics and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign

  15. Spreiter Q, Walter M (1999) Classical molecular dynamics simulation with the velocity Verlet algorithm at strong external magnetic fields. J Comput Phys 152:102–119. https://doi.org/10.1006/jcph.1999.6237

    Article  CAS  Google Scholar 

  16. Bhandarkar M, Bhatele A, Bohm E et al (2011) NAMD Version 2.9, NAMD User ’s Guide, Theoretical Biophysics Group, Beckman Institute, University of Illinois

  17. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) Software news and update Packmol : a package for building initial configurations. J Comput Chem 30:2157–2164. https://doi.org/10.1002/jcc

  18. Phillips JC, Braun R, Wang WEI et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Humphrey W, Dalke A, Schulten K (1996) VMD : Visual Molecular Dynamics. J Mol Graph 7855:33–38

    Article  CAS  PubMed  Google Scholar 

  20. Lin IJ (1990) With controlled power and direction 83:525–526

  21. Beaugnon E, Tournier R (1991) Levitation of organic materials. Nature 349:470–470

    Article  Google Scholar 

  22. Reddy BSK, Ghorpade VG, Rao HS (2014) Influence of magnetic water on strength properties of concrete. Indian J Sci Technol 7:14–18

  23. Parsons SA, Judd SJ, Stephenson T et al (1997) Magnetically augmented water treatment. Process Saf Environ Prot 75:98–104. https://doi.org/10.1205/095758297528869

    Article  CAS  Google Scholar 

  24. Cho YI, Lee SH (2005) Reduction in the surface tension of water due to physical water treatment for fouling control in heat exchangers. Int Commun Heat Mass Transf 32:1–9. https://doi.org/10.1016/j.icheatmasstransfer.2004.03.019

    Article  CAS  Google Scholar 

  25. Bikul’chyus G, Ruchinskene A, Deninis V (2003) Corrosion behavior of low-carbon steel in tap water treated with permanent magnetic field. Prot Met 39:443–447

    Article  Google Scholar 

  26. Moosavi F, Gholizadeh M (2014) Magnetic effects on the solvent properties investigated by molecular dynamics simulation. J Magn Magn Mater 354:239–247. https://doi.org/10.1016/j.jmmm.2013.11.012

    Article  CAS  Google Scholar 

  27. Wang Y, Wei H, Li Z (2018) Effect of magnetic field on the physical properties of water. Results Phys 8:262–267. https://doi.org/10.1016/j.rinp.2017.12.022

    Article  Google Scholar 

  28. Mark P (2017) Structure and dynamics of the TIP3P, SPC , and SPC / E water models at 298 K. 1–8. https://doi.org/10.1021/jp003020w

    Article  CAS  Google Scholar 

  29. Wang Y, Zhang B, Gong Z et al (2013) The effect of a static magnetic field on the hydrogen bonding in water using frictional experiments. J Mol Struct 1052:102–104. https://doi.org/10.1016/j.molstruc.2013.08.021

    Article  CAS  Google Scholar 

  30. Keffer D (2002) The working Person’s guide to determining self-diffusion coefficients from molecular dynamics simulations

  31. Chen PY, Hong CW (2010) Nanoscale transport dynamics inside a hydrated nafion membrane with electric field effects:17–25. https://doi.org/10.1002/fuce.200800108

  32. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P , SPC , and SPC / E Water Models at 298 K. J Phys Chem A 105:9954–9960. https://doi.org/10.1021/jp003020w

    Article  CAS  Google Scholar 

  33. Guevara-Carrion G, Vrabec J, Hasse H (2011) Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. J Chem Phys 134. https://doi.org/10.1063/1.3515262

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Aminfar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajeh, K., Aminfar, H., Masuda, Y. et al. Implementation of magnetic field force in molecular dynamics algorithm: NAMD source code version 2.12. J Mol Model 26, 106 (2020). https://doi.org/10.1007/s00894-020-4349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4349-0

Keywords

Navigation